

28 February 2014 ASX: GRR

GRANGE RESOURCES LIMITED

Australia's most experienced magnetite producer

UPDATED SOUTHDOWN PROJECT RESOURCE & RESERVE STATEMENT

HIGHLIGHTS

- Mineral Resources and Ore Reserves for the Southdown Project magnetite deposit in Western Australia updated as at 31 December 2013.
- Reflects minor updates from those reported on 15 February 2012 and at the completion of the Feasibility Study on 30 April 2012.
- Mineral Resources total 1.256.9Mt @ 33.7% DTR
- Ore Reserves total 387.7Mt @ 35.6% DTR
- 24.4Mt of the Inferred Resource located within the final pit design remains to be converted to reserve.
- The attached updated Southdown Project Mineral Resource & Ore Reserve has been compiled in accordance with JORC 2012

Grange Resources Limited (**ASX: GRR**) ("**Grange**" or the "**Company**") is pleased to advise that the Mineral Resources and Ore Reserves Estimates for the Southdown Project have been updated to be reported in compliance with the 2012 JORC Code. The Mineral Resources and Ore Reserves were previously published in April 2012. Minor updates to the weathering surfaces have been completed since then, resulting in a slight increase in Mineral Resources as shown in Table 1. Ore Reserves as shown in Table 2 have decreased slightly due to limitations imposed by compliance with environmental approval conditions; however a further 24.4Mt of Inferred Resource located within the final pit design is yet to be converted to Reserve.

Table 1 - Southdown Mineral Resource Estimate

as at 31 December 2013

	Measured	Indicated	Inferred	Total
	Resources	Resources	Resources	Resources
Tonnes (Mt)	423.0	86.8	747.1	1,256.9
DTR (%)	37.8	38.7	30.9	33.7
DTC Fe (%)	69.6	69.7	69.5	69.5
DTC Al ₂ O ₃ (%)	1.31	1.23	1.24	1.26
DTC SiO ₂ (%)	1.23	1.27	1.42	1.34
DTC P (%)	0.002	0.003	0.003	0.003
DTC S (%)	0.45	0.48	0.61	0.54
DTC LOI (%)	-2.94	-2.98	-2.86	-2.90
DTC CaO (%)	0.164	0.173	0.203	0.186
DTC K ₂ O (%)	0.009	0.008	0.013	0.011
DTC MgO (%)	0.166	0.156	0.166	0.165
DTC Mn (%)	0.034	0.036	0.042	0.038
DTC Na ₂ O (%)	0.04	0.03	0.03	0.04
DTC TiO ₂ (%)	0.40	0.34	0.36	0.37
DTC V (%)	0.022	0.017	0.024	0.023

(Above a cut-off of 10% DTR)

Notes - Elemental and oxide compositions were measured from Davis Tube Concentrate

Table 2 – Southdown Ore Reserve Estimate

	Proved Reserves	Probable Reserves	Total Reserves
Tonnes (Mt)	384.6	3.1	387.7
DTR (%)	35.6	41.7	35.6
SiO2 (%)	1.25	1.19	1.25
AI2O3 (%)	1.32	1.14	1.32
CaO (%)	0.16	0.21	0.17
MgO (%)	0.17	0.15	0.17
TiO2 (%)	0.42	0.33	0.41
Na2O (%)	0.04	0.04	0.04
K2O (%)	0.01	0.006	0.01
Р (%)	0.002	0.003	0.002
S (%)	0.49	0.40	0.50
Mn (%)	0.036	0.038	0.036
V (%)	0.024	0.015	0.024
LOI (%)	-2.912	-2.956	- 2.912

As at 31 December 2013

Notes – Elemental and oxide compositions are estimated for the concentrate product

SOUTHDOWN PROJECT

The Southdown project mine site is located within the South West region of Western Australia approximately 90 km northeast of Albany. The main access to the project site is via the South Coast Highway which bisects the deposit. The Project is a joint venture between Grange (70%) and SRT Australia Pty Ltd (SRTA) (30%). SRTA is jointly owned by Sojitz Corporation, a Japanese global trading company, and Kobe Steel, the fourth largest Japanese steel maker.

GEOLOGY & TENURE

The Southdown Project lies within the Albany-Fraser Orogen, a high grade metamorphic belt formed during the Mesoproterozoic as a result of the convergence of the Western Australian and Mawson Cratons. The host rocks are highly deformed granulite facies orthogneiss of the Dalyup Gneiss from the Biranup Zone of the Kepa Kurl Booya Province.

The Southdown Magnetite Deposit comprises an east-west striking zone of quartz-magnetite gneiss and granulite, hosted by a quartz-biotite dominant metasedimentary gneiss and migmatite assemblage. Aeromagnetic data and drilling confirms that the magnetite mineralisation has a strike length of approximately 12 km and dips at 60 to 65 degrees to the south. A low intensity magnetic anomaly extends a further 7km to the east for a total length of 19km.

The deposit occupies the core of a gently east plunging, overturned tight isoclinal syncline with a steeply south dipping axial surface. The deposit is offset by moderately northeast dipping dextral reverse faults and subsidiary steeply southeast dipping sinistral faults. The magnetite mineralisation is poorly exposed but forms a low east west trending ridge which is more prominent in the western half of the deposit but largely buried beneath 20-80m of Pallinup FM sands/silts. The magnetite mineralisation outcrops in only a few locations within the western portion of the deposit.

The western portion of the deposit is located entirely within mine lease M70/1309, with the eastern portion located within exploration licence E70/2512. A group of other exploration licences and general purpose leases comprise the total mining tenement holding which surrounds the deposit and covers all proposed infrastructure areas associated with a potential mining operation.

DRILLING, SAMPLING & ANALYSIS

The Southdown deposit has been extensively drilled, with a comprehensive database of 401 diamond drill holes which inform the resource model, for 102km of drilling. Drilling was conducted on approximately 100m spaced sections orientated perpendicular to the overall orebody strike. On-section spacing (down-dip) varies but is commonly 50-100m. The mineralisation is sub-vertical and the holes are typically inclined at -60°. Drill core recoveries are excellent, generally >98%.

All drill collars have been surveyed using real time kinematic GPS. Down hole surveys in the majority of holes have been conducted using north seeking gyro instruments.

Diamond core was a combination of HQ and NQ sizes, with some PQ and 6 inch core for metallurgical test work. Sample intervals were based on geological contacts and generally between 1 and 3m in length. All core samples were half core, generated by diamond sawing. Density determinations for all mineralised samples were undertaken on site using the water immersion method. Samples were sent to a NATA accredited laboratory to be dried, crushed, split and pulverised to nominally 98% passing 75µm for Davis Tube Recovery (DTR) determination.

Davis Tube Recovery is the fundamental unit of ore grade measurement at a magnetite mine. DTR is a measure of the "recoverable" magnetite as determined by equipment which seeks to mimic the process occurring in the concentrator. Thus DTR can be used to predict the concentrate contained within the ore, which is far more relevant than an analysis for total

iron. The DTR is a physical test, dependent on the actual liberation of the magnetite from its gangue elements. This liberation is directly related to the grind distribution and just as no two orebodies grind in the same way, no two orebodies can assume the same pulverizing technique in the DTR. The recoverable magnetite from the Davis Tube is called Davis Tube Concentrate (DTC) and is weighed to determine the proportion of the original sample which is recovered. The DTC is then analysed by X-Ray Fluorescence (XRF) to assess the Total Fe, SiO2, Al2O3, S, TiO2, Na2O, K2O, CaO, MgO, Mn, P and V.

During the Southdown Feasibility Study (2011-12) a significant bias was identified in XRF analyses from samples analysed during 2005-2006. The major impact was significantly higher SiO_2 values from the DTC, with lesser impacts on other elements. It is believed that variable wash times in the DTR method at that time caused this bias. An extensive program of re-analysing 10% of samples from the period defined the bias, enabling statistical algorithms developed by SGS Mineral Services to be applied to that data to correct the bias. This correction has been thoroughly reviewed internally and by external consultants including Golder (who developed the initial resource models) and Optiro (who undertook the peer review of the resource and reserve models for the Feasibility Study).

GEOLOGICAL INTERPRETATION AND RESOURCE ESTIMATION

The Southdown Resource Model has been updated leading to a slight increase in total tonnage at similar grades. The update reflects a revision of weathering surfaces which has resulted in material previously incorrectly classed as oxidised now being included in the Resource. Oxidised material is still excluded from the Resource. This updated Resource model was utilised for the Reserve calculation for the Feasibility Study but has not had a material impact on the Reserve.

The Southdown mineralisation is subdivided into 4 zones by faults (Figure 1) which laterally offset the stratigraphy by up to 100m, which would otherwise be continuous for the full strike extent of 11km of the model. Being hosted in a synformal structure, the depth extent is reasonably well defined by the fold hinge. The mineralisation has a total width of up to 100m, and ranges in depth below ground level from 50 to >550m.

The geological wireframes were developed using interpretations on 100m spaced vertical sections, perpendicular to the strike. The work was all done in Geovia Surpac using a cut-off grade of 10%DTR to guide wireframe boundaries. Sections were cut showing drill hole traces with lithology and DTR information, as well as traces of modelled faults, overlying sediments and oxidation surfaces. Interpretations were completed for each of the main rock types present within the mineralized horizons. Sectional interpretations were wireframed in 3D, taking particular care around the offsetting faults.

Drill hole sample data was flagged as ore in the database within the domain wireframes interpreted for each zone and rock type. Sample data was generally of 3 metre downhole lengths however in the minor rock type domains there are many narrower intervals.

Figure 1: Locality Diagram

To ensure that all sample data was incorporated in the estimation, all samples were included and weighted by length. Elemental compositions of the DTR concentrate were also weighted by the corresponding DTR value for that sample. No top cuts have been applied to the current model due to the limited influence of outliers.

Accumulated attributes (values after weightings applied) were subjected to variographic analysis undertaken by BMGS Perth in order to develop modelling parameters. The block model was constructed using a 20mE by 20mN by 12mRL parent block size with sub-celling to 10mE by 10mN by 6mRL. The estimation was undertaken using Ordinary Kriging for all attributes. All tonnages were estimated on a dry basis. No mining factors have been applied to the resource model. Table 1 depicts the Mineral Resource Estimate as at December 2013, reported above a cut-off of 10% DTR. Totals may not sum exactly due to rounding.

Mineral Resources have been classified on the basis of confidence in geological and grade continuity using the drilling density, geological model, modelled grade continuity and conditional bias. Classification surfaces were constructed for the entire deposit utilising the factors above. The classification was written to the block model based on relative position with respect to the surfaces. Mineralised Zones have generally been extrapolated 50-100m to the base of the interpreted synclinal structure owing to the high reliability of the interpretation as tested in several locations along the strike. In the Far East Zone the extrapolation of 150-200m to the interpreted base of the syncline is supported by detailed structural data and interpretation on drilled sections, as well as a 3D inversion model produced by Southern Geoscience Consultants. Approximately 35% of the Inferred

Resources have been extrapolated beyond the limits of current drilling to fill the interpreted synclinal structure. Figure 2 illustrates the distribution of the resource categories over the full 11km extent of the model.

Figure 2: Orthographic Representation of Resource Classifications and Drilling

The Resource model estimates have been validated against previous model estimates using swath plots and visual inspection of the model around new drill hole data in section. A range of lower cut-offs was used in the Grade –Tonnage curve as shown below in Figure 3.

Figure 3: Grade – Tonnage Curve for all resource categories

ESTIMATION OF ORE RESERVES

The Ore Reserves for the Southdown Project were estimated as part of a +/-15% Feasibility Study into the development of an integrated magnetite project comprising mining, concentrating and export of the final product through proposed new facilities at the Port of Albany. The Ore Reserves are based on the Mineral Resource model, sdn_resource1205.mdl.

A cut-off grade of 10% Davis Tube Concentrate mass recovery (DTR) has been used for reporting which is above the marginal cut-off of 9% (DTR). The Ore Reserves are reported within a detailed staged pit design which is based on Whittle open pit optimisation. The optimisation was carried out including Measured and Indicated Mineral Resource categories and using a gross FOB price at Albany of US\$111.07/dmt concentrate.

Mining will be undertaken by conventional bulk mining methods utilising hydraulic face shovels, dump trucks and drill and blast. The overall pit slopes used for the design and optimisation are based on geotechnical studies compiled by Mining One for the Feasibility Study. The Reserve block model includes an allowance for likely mining dilution based on a regularisation of the Resource Model. The regularisation has added approximately 1% tonnage and reduced the DTR by 4%. No mining loss has been allowed for beyond the effects of regularisation. Minimum mining widths are based upon the scheduled resource blocks sizes of 50 m in width. The bench mining width has not been restricted and the full width of the ore will be utilised. The Smallest Mining Unit (SMU) assumed is 10 m x 10 m x 12 m in the X, Y and Z direction respectively to coincide with the ore reserve blocks.

Some Inferred Mineral Resources (24.4Mt) are located within the overall pit design. These are excluded from the stated Ore Reserve and but has been included in the LOM Schedule to ensure appropriate application of metallurgical factors to all blocks. The impact of this material on the overall schedule is not considered to be material to the viability of the Project. The Feasibility Study has considered all infrastructure associated with the selected mining and processing methods.

As part of the Feasibility Study a programme of metallurgical drilling and pilot plant test work was undertake to mimic the proposed concentrator design and to determine the metallurgical factors and Concentrate Magnetite recovery. The concentrate recovery is 0.981 x DTR which equates to 98.1% recovery of potential magnetically recoverable material. There are no metallurgical factors applied to concentrate compositions except for Sulphur which has been set at 0.08% on the basis of flotation test work completed to date. Tails Density has been set at 1.7 t/m³.

Currently the Project has secured primary State and Federal environmental approvals, with the Federal EPBC approval for the mine site in progress. The Project is largely located within freehold land; however some locations along pipeline alignments are subject to Native Title Claims. Discussions with representatives of the Claimant Groups are well advanced. The majority of land acquisitions and agreements with various parties for land access are in place

or in an advanced state with no impediment expected to prevent them being finalised in a timely manner. The majority of mining tenements are in place. Two aspects are outstanding – a general purpose lease over the processing area, and a miscellaneous licence over the desalination pipeline. Both tenements will be progressed once negotiations with the relevant land owner are concluded.

Capital costs were estimated during the +/-15% Feasibility Study using subject matter experts and supported by budget quotes in most circumstances. Operating costs were derived by firsthand experience gained at the Savage River Mine, and via industry experience of the relevant consultants involved in the Feasibility Study. A market study by CRU (Specialist Matter Experts in the market analysis for mining and metals) was used as the basis of the exchange rate, market expectations and product pricing.

All Measured Resources have been converted to Proven Ore Reserves and all Indicated Resources have been converted to Probable Ore Reserves within the ultimate pit design. There is a small amount of Inferred Resources contained within the pit design which does not form part of the Ore Reserve by definition. There have been no Measured Resources which have been classified at Probable Ore Reserves.

The Competent Person considers the global Ore Reserve to have a high degree of confidence due to the extensive and rigorous studies undertaken, and the extensive experience of the SDJV and their consultants in developing Ore Reserves for Savage River and other deposits. A decreased level of accuracy is expected for the elemental compositions of the concentrate owing to the difficulty in predicting conversion factors from DTR concentrate to actual concentrate. These factors will be deposit specific and can only be determined accurately once production data is available. The risk to the Reserve however is considered negligible due to extensive related test work and experience in processing magnetite ores.

The Ore Reserves were estimated with the assistance of Golder Associates, and peer reviewed by Optiro during the Feasibility Study.

JORC CODE 2012 TABLE 1 - SOUTHDOWN PROJECT

SECTION 1 - SAMPLING TECHNIQUES AND DATA

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 The deposit was sampled using diamond drill holes (DD) on a nominal 100m x 50m grid spacing. A total of 401 DD holes were drilled for 102,000 m. Holes were generally angled at -60° towards grid north to optimally intersect the mineralised zones.
	• Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Diamond core was used to obtain the best possible sample quality for lithology, geotechnical, grade and density information.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. 	 Diamond core was a combination of HQ and NQ sizes, some triple tube. Sample intervals were controlled based on geological contacts and generally between 1 and 3 meters in length. All core samples were continuous through mineralised zones to capture all intervals, and half cored by diamond sawing by following the orientation line to ensure consistent sampling. Samples were dried, crushed, split and pulverised to nominally 98% passing 75µm for Davis Tube Recovery (DTR) determination. All samples are analysed for DTR, with Total Fe, SiO2, Al2O3, S, TiO2, Na2O, K2O, CaO, MgO, Mn, P, V and LOI analysed from the Davis Tube concentrate.

Grange Resources Limited ABN 80 009 132 405

Criteria	JORC Code explanation	Commentary
Drilling techniques	 Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what 	 All samples used in the resource estimation were sourced from diamond drill core of either HQ or NQ size with Reverse Circulation (RC) precollars. Some core was drilled using triple tube techniques however the excellent core recoveries have found that standard tube methods are suitable
Drill sample recovery	 method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. 	 Core recoveries were recorded in the acQuire database. Core recoveries are generally high in the mineralised zones at Southdown (>98%) and there are no significant core recovery issues.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Drilling penetration rates were controlled in order to maximise recovery in ore zones.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 No relationship between sample recovery and grade is known at Southdown.
Logging	• Whether core and chip samples have been geologically and geo- technically logged to a level of detail to support appropriate Mineral Resource estimation, mining	 Core samples have had detailed geological and structural logs completed. Basic geotechnical logging was undertaken routinely with detailed geotechnical logging on a selected series of oriented holes. Some early drill holes used RC/open hole percussion techniques for precollaring. Only

8.1

2

Criteria	JORC Code explanation	Commentary
	studies and metallurgical studies.	basic lithological logging was recorded for these portions.
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	 Logging is a combination of qualitative and quantitative methods, recording details for lithology, alteration, mineralisation, shearing, weathering, and structure/basic geotechnical. All drill core was photographed wet and dry.
	• The total length and percentage of the relevant intersections logged.	All drill core was fully logged.
Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 As standard practice core was half core sampled, with the exception of core sampled for metallurgical testing that was full core sampled.
preparation	 If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 No non-core samples have been used for resource estimation purposes.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Core was cut using a diamond impregnated saw blade on site at the Southdown core farm. The ore is moderately foliated and cutting is generally perpendicular to the foliation. Standard procedure is to cut along the orientation line. If a line was not present a black line was drawn on to provide a consistent reference for cutting. The sample preparation of diamond core follows industry best practice in sample preparation involving oven drying at 110 degrees for 12 hours, then coarse crushed to minus 2mm on a Boyds crusher then split to ~3kg, crushed again to 90% passing 1.7mm and split again with a 150g sub-sample taken for pulverising to 98% passing 75 microns.
	 Quality control procedures adopted for all sub-sampling stages to maximise 	 Standard core cutting and sample handling procedures are followed to minimise possible contamination between samples. This is a minimal risk owing to the quantum of grades (ie

Criteria	JORC Code explanation	Commentary
	representivity of samples.	tens of percent).No quality control samples were collected at this stage.
	• Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Hand held magnetic susceptibility readings are taken for every metre of drill core. There is a strong correlation between DTR and magnetic susceptibility enabling the calibration of magnetic susceptibility to DTR to serve as a general check on DTR values and sample integrity. Sample preparation techniques are industry standard for magnetite ores.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	 The sample sizes are considered to be appropriate based on the style of mineralization, the thickness and consistency of the intersections and assay range for the primary analysis (% recoverable magnetite concentrate).
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 The primary assay technique is Davis Tube Recovery (DTR) on a 10g sample, followed by Total Fe, SiO₂, Al₂O₃, S, TiO₂, Na₂O, K₂O, CaO, MgO, Mn, P and V via XRF with LOI on the Davis Tube Concentrate (DTC). All techniques are considered total. DTR is the most appropriate assay technique for determination of magnetite recovery.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make	 Magnetic susceptibility instruments are used to provide indications of grade on the drill core to assist with sample selection. These do not form part of the formal resource or reserve estimate at any time.

8

Criteria	JORC Code explanation	Commentary
	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Certified reference materials are inserted at a rate of 1 in 50. Coarse and preparation duplicates are undertaken at a rate of 1 in 50, each with lab repeats undertaken at a rate of 1 in 20. Sizing checks on the grinding are performed at a rate of 1 in 10. Data analysis has been performed and the data demonstrates sufficient accuracy and precision for use in Mineral Resource estimation for deposits of this type.
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	 Significant intersections are verified by alternative company personnel.
	• The use of twinned holes.	No twinned holes have been drilled.
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Primary data is captured directly to standard template acQuire database log sheets using laptops with standard logging codes and data entry control. The data is verified by the geologist and then loaded into the central (project-wide) database. All procedures are maintained in the Core Handling Manual.
	• Discuss any adjustment to assay data.	 During the Southdown Feasibility Study (2011-12) a significant bias was identified in XRF analyses from samples analysed during 2005-2006. The major impact was significantly higher SiO2 values from the DTR Concentrate, with lesser impacts on other elements. It is believed that variable wash times in the DTR method at that time caused this bias. An extensive program of re-analysing 10% of samples from the period defined the bias enabling statistical algorithms developed by SGS Mineral Services to be applied to that data to

8.

3

Criteria	JORC Code explanation	Commentary
		 correct the bias. This correction has been thoroughly reviewed internally, and by external consultants including Golder (who developed the initial resource models and methodology) and Optiro (who undertook the peer review of the resource and reserve models for the Feasibility Study).
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 All drill collars are surveyed by contract surveyors using high resolution RTK GPS with an expected accuracy of +/- 100mm in easting, northing and elevation. For downhole surveys, the majority of holes are surveyed using a north seeking gyro with stations every 5-10m downhole with an expected accuracy of +/-1 degree in azimuth and +/-0.1 degree in inclination. Where gyro surveys are unable to be conducted single-shot Eastman dips at 30m spacing downhole are utilised. Hole azimuths for these are assumed to be straight (as compass data is not useable due to the magnetic nature of the mineralisation). Analysis of gyro data indicates this is a reasonable assumption with little deviation observed.
	• Specification of the grid system used.	• The grid system used is MGA GDA94 Zone 50.
	 Quality and adequacy of topographic control. 	• The topographic surface in the vicinity of the deposit has been developed using an airborne LIDAR survey conducted in 2010 which produced 0.5m contours.
Data spacing and	• Data spacing for reporting of Exploration Results.	• The nominal drill hole spacing is 100m (between section) and by 50-100m (on section).
distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and	• Data spacing and distribution are analysed in semi-variograms and provide geo-statistical ranges for use in resource categorisation. The sample spacing is appropriate to provide a defensible resource classification to 2012 JORC Code standard.

Criteria	JORC Code explanation	Commentary
	Ore Reserve estimation procedure(s) and classifications applied.	• The mineralised domains have demonstrated sufficient continuity in both geological and grade continuity to support the definition of Mineral Resource and Reserves, and the classifications applied under the 2012 JORC Code.
	• Whether sample compositing has been applied.	 No compositing is undertaken and all data used is length weighted.
Orientation of data in relation to geological structure	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	• The majority of drill holes are oriented to achieve intersection angles as close to perpendicular to the mineralization as is practicable.
	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 No orientation based sampling bias has been identified in the data at this point.
Sample security	• The measures taken to ensure sample security.	 All samples are logged and bagged by site geological staff and sent to contracted laboratories. All samples are tracked in the database from cutting to return from the laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 During the Southdown Feasibility Study (2011- 12) a significant bias was identified in XRF analyses from samples analysed during 2005- 2006. The major impact was significantly higher SiO2 values from the DTR Concentrate, with lesser impacts on other elements. It is believed that variable wash times in the DTR method at that time caused this bias. An extensive programme of re-analysing 10% of samples from the period defined the bias enabled statistical algorithms developed by SGS Mineral Services to be applied to that data to

2

Criteria	JORC Code explanation	Commentary
		correct the bias.
		This correction has been thoroughly reviewed
		internally, and by external consultants, including
		Golder (who developed the initial resource
		models and methodology) and Optiro (who
		undertook the peer review of the resource and
		reserve models for the Feasibility Study).
		• The Resource model was formally peer reviewed
		by Golder Associates and Optiro.

SECTION 2 - REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral	• Type, reference	• All mining tenure is held jointly by the
tenement and	name/number, location	participants in the Southdown Joint Venture
land tenure	and ownership including	(SDJV) – Grange Resources Ltd (70%) and SRT
status	agreements or material	Australia Pty Ltd (30%).
	issues with third parties	• Mining Lease M70/1309 is held by the SDJV
	such as joint ventures,	participants over the western half of the
	partnerships, overriding	identified Mineral Resource. Land tenure is
	royalties, native title	predominantly freehold farming land with some
	interests, historical sites,	road reserves managed by Main Roads WA and
	wilderness or national	the City of Albany. This lease expires in Nov 2033.
	park and environmental	• Exploration License E70/2512 surrounds the
	settings.	immediate area of the mine lease and extends
		eastward to cover the eastern half of the
		identified Mineral Resource as well as the
		eastern extension of the magnetic anomaly. Land
		tenure is predominantly freehold farming land
		with some road reserves managed by Main
		Roads WA and the City of Albany. This license
		was granted in Oct 2003 and currently requires
		annual renewal.
		• Exploration License E70/3073 surrounds
		E70/2512 and encompasses the entire
		immediate project area. Land tenure is
		predominantly freehold farming land with some
		road reserves managed by Main Roads WA and
		the City of Albany. It has several Reserves and a
		small sliver of National Park excised from the
		area. The initial 5 year License expires in May
		2014 and no impediment is expected to the
		granting of a further 5 year extension.
		Exploration License E/U/3896 lies Within F70/2072 on its southern morning load to a set to a
		E/0/30/3 on its southern margin. Land tenure is
		predominantly reenoid farming land with some
		has several Peserves excised from the area. The
		initial E year License every a April 2016 and as
		impediment is expected to the granting of a
		further E year extension
		further 5 year extension.

8.

Criteria	JORC Code explanation	Commentary	
		 General Purpose Lease G70/217 is situated on the southern margin of the Mine Lease completing coverage of the proposed Project area. Land tenure is entirely freehold farming land. The Lease expires in August 2029. General Purpose Lease G70/245 is currently under application to cover the northern part of the Project area which is the proposed site of mining and processing infrastructure. The area is located within E70/2512. Grant of the Lease is waiting on land owner consent which is currently being negotiated in conjunction with a purchase option agreement. There are no native title issues relating to the current mining tenure. Extensive consultation with local aboriginal groups has been undertaken to appropriately manage several heritage sites within the tenements. 	
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 All mining tenements are managed to be maintained in good stead. There are no known impediments to retaining current or future tenement requirements. 	
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Regional-scale aeromagnetic geophysical surveying by the Australian Bureau of Mineral Resources (BMR) identified the magnetic anomaly in 1983. Initial exploration was commenced by the Southdown Mining Syndicate and CRA Exploration between 1984 and 1986. In 1987 Portman Mining Ltd completed 40 drill holes to prove up the western 2km of the deposit and undertook scout drilling along the eastern 13km of strike of the anomaly. No work was undertaken between 1988 and 2003, when Grange Resources Ltd purchased the western portion of the property. Rio Tinto drilled 23 diamond holes on the eastern 	

Criteria	JORC Code explanation	Commentary
	 the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	appended to this Statement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	 Average interval grades were determined by averaging all samples weighted by sample length. Intervals are selected using a 10% DTR cut-off. Internal intervals below 10% DTR have been included unless they are >5m in length There is no cutting of high grade results.
	• Where aggregate intercepts incorporate short lengths of high	 As magnetite is a bulk commodity, no high/low grade portions of intervals are reported, the entire orebody width is reported in each

2

Criteria	JORC Code explanation	Commentary
	grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	intercept.
	• The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No metal equivalent values have been reported
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not length, true width not 	 The mineralisation generally dips at 60-65 degrees to the south. Drill holes are generally oriented to the north at 60 degrees. All intervals have been reported in the attached tables as down hole intervals.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional 	 A locality plan and typical cross sections for each deposit area are included below.

Criteria	JORC Code explanation	Commentary		
	views.			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drilling results have been reported in the attached tables. 		
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Extensive work has been undertaken on the deposit since 2005, culminating in the completion of a Feasibility Study (FS) in 2012. This has included: Extensive airborne and ground geophysical surveys and interpretations, Detailed geotechnical logging and interpretation of wall stability and infrastructure foundations, Metallurgical and petrologic studies, including 3 bulk samples for pilot plant testwork using drill core (22t, 27t and 41 t each), Geochemical testwork for ARD potential, Exhaustive mining, processing, groundwater, environmental, heritage and social studies. 		
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 The western portion of the deposit (West, Central and East Zones) is essentially ready to move into the detailed engineering stage prior to construction. Further resource definition drilling is required for the eastern portion (Far East Zone) to upgrade the Inferred resources. There is potential to define some additional resource further east; however, the intensity of the magnetic anomaly is gradually decreasing. As the deposit is hosted in a synclinal structure, 		

8.1

2

Criteria	JORC Code explanation	Commentary
		there is no potential for significant extensions to the depth.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The diagrams below indicate the location of areas referred to in the point above.

Southdown – Locality Plan showing Mineral Resource with planned infrastructure

Typical Cross Section for the Western Zone 638,000mE

Typical Cross Section for Central Zone 639,500mE

Typical Cross Section for Eastern Zone 640,500mE

Typical Cross Section for Far Eastern Zone 643,200mE

SECTION 3 - ESTIMATION AND REPORTING OF MINERAL RESOURCES

Criteria	JORC Code explanation	Commentary			
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. 	 In May 2011 an acQuire database was implemented at Southdown, significantly strengthening the validation and controls on data entry and import. Historic data was rigorously validated to ensure it was at a similar standard on migration to the new database Visual validation in 3D is utilised by the plotting of sections with block grades, drill hole assays and geology intervals displayed. The database has strict security levels which limits access for various purposes to reduce the risk of accidental changes to the data. 			
	• Data validation procedures used.	 Validation of the database occurs at distinct stages: Data entry – data is entered into acQuire data entry forms, controlled by lookup lists and ranges of acceptable values On entry to the database – data is cross-checked visually Before extracting composites – a set of queries are run, checking for data continuity, abnormal values and overlapping ranges. At all stages spot checks are made on specific areas against raw data or core where available, to check for accuracy and/or correlation. Where applicable, data is plotted out on section or graphically for visual checking. 			
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 The Competent Person has worked on the Project since 2009 and had responsibility for the execution of all studies and drilling programmes. The Competent Person has undertaken frequent visits to the site and worked closely with consultants in compiling the resource estimate. 			

Criteria	JORC Code explanation	Commentary
	 If no site visits have been undertaken indicate why this is the case. 	Not applicable
Geoloaical	• Confidence in (or	• Successive drill programmes have consistently
interpretation	conversely, the	intersected the geological model as expected,
merpretation	uncertainty of) the	providing a high degree of confidence in the
	geological interpretation	geological interpretation.
	of the mineral deposit.	• There is some degree of uncertainty relating to the depth of the synclinal structure in the Far East Zone as it has very limited drill testing. It is, however, supported by detailed structural measurements taken from drill core and 3D inversion modelling of ground magnetic data.
	 Nature of the data used and of any assumptions made. 	• The geological wireframes were developed using interpretations on 100m spaced vertical sections, perpendicular to the strike. The work was all dono in Goovia Surpac
		 done in Geovia Surpac. Sections were cut showing drill hole traces with lithology and DTR information, as well as traces of modelled faults, overlying sediments and oxidation surfaces. Interpretations were completed for each of the main rock types present within the mineralized horizons. Sectional interpretations were wireframed in 3D
		taking particular care around the offsetting faults.
	• The effect, if any, of alternative interpretations on Mineral Resource estimation.	• The robustness of the geological model has indicated that alternative models are unlikely. Alternatives will be considered during future drilling of the Far Eastern Zone to ensure the appropriate interpretation is made.
	• The use of geology in guiding and controlling Mineral Resource estimation.	 Geology, lithology and structure are used to guide and control the interpretation and wireframing of ore lenses in preparation for resource estimation. In particular, wireframes are based on lithology,

- × 1

Critoria	IOPC Code explanation	Commontary			
Criteria	JORC Code explanation	Commentary	alaan (anlah)	idaa ah aawa	at) and fault
		DTR, miner	alogy (sulph	ides an garn	et), and fault
		boundaries			
	The factors affecting				
	continuity both of grade	The location	n within a sy	nclinal struc	ture controls
	and geology.	the depth	extent, wit	h units eas	ily traceable
		through the	e limbs and in	nto the hinge	e zone. At the
		meter sca	le local v	ariations of	ccur around
		parasitic fo	lding but thi	s is not expe	ected to have
		a material e	effect on the	Mineral Reso	ource.
		Strike exter	nt is highly c	ontinuous ov	ver the 11km
		defined thu	s far, with th	ne exception	of offsets by
		three moo	lerately no	rtheast dip	ping dextral
		reverse fa	ults which	have 50-1	.00m lateral
		displaceme	nts.		
Dimensions	• The extent and variability	The South	own minera	alisation is d	ivided into 4
	of the Mineral Resource	zones by f	aults which	offset the	stratigraphy;
	expressed as length	mineralisati	on would d	otherwise be	e continuous
	(along strike or	over the ful	l strike exter	nt.	
	otherwise), plan width,	Being hoste	d in a synfo	rmal structu	re, the depth
	and depth below surface	extent is r	easonably v	vell defined	by the fold
	to the upper and lower	hinge.			
	limits of the Mineral	7	Chuilten Fridaust	Middle Fritand	Douth Futout
	Resource.	Western Zone			
		Central Zone	1 200	100	480
		Eastern Zone	2 000	100	520
		Far Eastern Zone	5 700	100	570
Estimation	• The nature and	The variogr	aphic studies	s and resour	ce estimation
and modeling	appropriateness of the	were under	taken by BN	AGS Perth us	sing Gemcom
tochniquoc	estimation technique(s)	Surpac soft	ware.		
techniques	applied and key	• The resour	ce estimatio	on was perf	ormed using
	assumptions, including	Ordinary Kr	iging (OK).		8
	treatment of extreme	 No top cut 	s have beer	n applied to	the current
	grade values, domaining,	model due	to the limite	d influence o	of outliers.
	interpolation parameters	Sample dat	a was gener	allv of 3 met	tre downhole
	and maximum distance of	lengths; h	owever, in	the minor	r rock type
	extrapolation from data	domains th	ere are mar	ny narrower	intervals. To
	points. If a computer	ensure that	all sample	data was inc	corporated in
	assisted estimation	the estimat	ion, no sam	ples within t	he ore zones
	method was chosen	were omitt	ed and san	nples were	weighted by
	include a description of	length.			- <i>'</i>

181

3

				đ						
Criteri	а	JORC Code explan	ation	Со	Commentary					
		computer software and parameters used.		•	Elem were value Accu were analy Searc belov	ental co also w for that mulated applied vsis to de ch paran w.	mpositions eighted by t sample. attributes d) were su evelop mod neters used	s of the E v the cor (values a ubjected lelling par d for each	DTR cond respond after we to vario ameters pass are	centrate ing DTR ightings ographic e tabled
					Southd	own Search	Parameters - All	Attributes		
		Р	Pass Bearin g (Z)	Plunge (X)	Dip (Y)	Major Axis (m)	Major/ Semi- major Ratio	Major/ Minor Ratio	Min Samples	Max Samples
			1 80	0	-80	200	1	10	4	32
			2 80 3 80	0	-80 -80	400 600	1	10	4	32
		• The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.		•	The l by 20 cellir New previ visua hole This have	block mo 0 mN by g to 10 m model ous moo l inspec data in s deposit i any pro	odel was co 12 mRL pa mE by 10 m estimates del estimat tion of the section. s yet to be duction dat	onstructed arent bloc N by 6 m are con es using e model a develope ta for reco	d using a ck size w RL. mpared swath p round n d and do onciliatio	a 20 mE rith sub- against lots and lew drill bes not on. idered.
		 regarding recovery of by- products. Estimation of deleterious elements or other non- grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block 		•	Conc (imp wher using estim Analy dete	entrate urities) re sampl g ordina nate. ysis has rmine th	grades ar all have es were av ary kriginį been unde e appropri	nd delete variogra ailable an g during rtaken by ate block	erious e phy cou d are es the r BMGS I size for	lements mpleted timated resource Perth to the drill

Criteria	IORC Code explanation	Commentary
Criteria		
	 Size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective 	 Noie spacing. The optimum kriging efficiency was determined to be 20mNx20mEx12mZ using the West Zone as a test area. Sample density is generally 100m between sections and 50-100m down dip. No selective mining unit had been determined at the time of estimation.
	 Any assumptions about correlation between 	 There is a strong correlation between DTR and density which is described below in the Bulk
	variables.	Density which is described below in the bulk Density section. There is also a strong correlation between Total Fe in concentrate and DTR as almost all Fe is associated with the magnetite. No correlations were assumed in the estimation process.
	• Description of how the geological interpretation was used to control the resource estimates.	• Drill hole sample data was flagged as ore in the database within the domain wireframes interpreted for each zone and rock type. Composites extracted from the database for each domain are therefore controlled by the geological interpretation.
	 Discussion of basis for using or not using grade cutting or capping. 	• No top cuts have been applied to the current model due to the limited influence of outliers.
	• The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.	 New model estimates are compared against previous model estimates by swath plots and visual inspection of the model around new drill hole data in section. This deposit is yet to be developed and does not have any production data to reconcile against.
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 Tonnages are estimated on a dry basis. Limited moisture determinations have been made in the past which indicate negligible moisture within the highly competent drill core.

- × 1

Criteria	JORC Code explanation	Commentary
Cut-off	• The basis of the adopted	• The cut-off grade of 10% DTR is based on a
parameters	cut-off grade(s) or quality	natural break in the grade-tonnage curve and is
	parameters applied.	supported by economic analysis undertaken
		during the Feasibility Study.
Mining factors	Assumptions made	• The selective mining unit determined during the
or	regarding possible mining	Feasibility Study is 10 mE x 10 mN x 12 mRL,
assumptions	methods, minimum	assuming standard truck and shovel mining
	mining dimensions and	methods.
	internal (or, if applicable,	• No mining factors (i.e. dilution, ore loss,
	external) mining dilution.	recoverable resources at selective mining block
	It is always necessary as	size) have been applied.
	part of the process of	• Significant internal dilution bands are
	determining reasonable	wireframed and modelled during estimation.
	prospects for eventual	 Analysis of sub-grade mineralised samples (<10%)
	economic extraction to	DTR) has provided average DTR and concentrate
	consider potential mining	grades which have been applied to blocks
	methods, but the	external to the mineralised units. This will be
	assumptions made	used to account for external dilution at the
	regarding mining methods	reserve estimation stage.
	and parameters when	
	estimating Mineral	
	Resources may not always	
	be rigorous. Where this is	
	the case, this should be	
	reported with an	
	explanation of the basis of	
	the mining assumptions	
	made.	
Metallurgical	• The basis for assumptions	• DTR has been incorporated into the model as a
factors or	or predictions regarding	measure of metallurgical recovery in the
assumptions	metallurgical amenability.	magnetic separation process. This is based on
,	It is always necessary as	the performance of DTR at Grange Resources'
	part of the process of	Savage River mine, where it has been employed
	determining reasonable	as a proven measure of delineating ore and
	prospects for eventual	waste, and in modelling the anticipated
	economic extraction to	recoveries through the magnetic separation
	consider potential	process for over 40 years.
	metallurgical methods,	No further metallurgical recovery factors have
	but the assumptions	been applied to the resource model.
	regarding metallurgical	
	treatment processes and	

- 8 -

Criteria	JORC Code explanation	Commentary
	 of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The classification categories applied reflect the Competent Person's views on the deposit.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 Optiro undertook a peer review of the Mineral Resource and Ore Reserve as part of the Feasibility Study. They found "the resource model to be a robust estimate of the Southdown Mineral Resource". Optiro raised several issues but acknowledged they would be of minor concern, with the exception of considering the factoring of historic assays in the classification stage. This is discussed below. Golder also reviewed the Resource Model for the Feasibility Study, having completed the previous resource models and largely defining the methodology used in the current model.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate 	 The Competent Person considers the Mineral Resource estimate to have a high degree of confidence for the western portion of the deposit (excluding the Far East Zone). Many phases of drilling have tested the geological interpretation and previous resource models, and consistently found them to be accurate. In particular drill holes targeting the base of the deposit in the keel of the syncline have repeatedly intersected the interpreted units as expected, thus supporting the extension of measured resources to the base of the keel. The factoring of 2005/2006 DTC XRF results introduces a level of risk in estimating the impurities in the final concentrate product. The SDJV and the Competent Person have assessed this risk and determined that it is not sufficient to downgrade the resource classification for the following reasons: There is a broad spread of post 2006 infill drilling throughout the areas of 2005/2006

SECTION 4 - ESTIMATION AND REPORTING OF ORE RESERVES

Criteria	JORC Code explanation	Commentary		
<i>Mineral Resource estimate for conversion to Ore Reserves</i>	• Description of the Mineral Resource estimate used as a basis for the conversion to an Ore Reserve.	 The Mineral Resource model for Southdown Deposit has been developed by BMGS Perth as part of an ongoing Feasibility Study and any information in this statement which relates to Mineral Resources is based on data compiled by Ben Pollard who is a full-time employee of BMGS Perth and a Member of the Australasian Institute of Mining and Metallurgy. The Mineral Resource model was identified as sdn_resource1205.mdl. 		
	• Clear statement as to whether the Mineral Resources are reported additional to, or inclusive of, the Ore Reserves.	• The stated Mineral Resource is inclusive of the Ore Reserve		
Site visits	• Comment on any site visits undertaken by the Competent Person and the outcome of those visits.	 The Competent Person has had more than 10 years of experience in an open pit Magnetite mine at senior operational management and technical level. The Competent Person has worked on this Project since 2008, has had several visits to the site and worked extensively with the consultants undertaking studies in relation to developing ore reserves for the project. 		
	 If no site visits have been undertaken indicate why this is the case. 	No applicable		
Study status	• The type and level of study undertaken to enable Mineral Resources to be converted to Ore Reserves.The Code requires that a study	 This report is part of a detailed Feasibility Study that was completed in July 2012. The information used for estimation and reporting of this Ore Reserve is based upon that Feasibility Study, and has an accuracy of +/- 15% 		

34a Alexander St, Burnie Tasmania 7320

8.

Criteria	JORC Code explanation	Commentary
	Inferred Mineral Resources are utilised in mining studies and the sensitivity of the outcome to their	 from the LOM Schedule to ensure appropriate application of metallurgical factors to all blocks. The Feasibility Study has considered all infrastructure
	 inclusion. The infrastructure requirements of the selected mining methods. 	associated with the selected mining and processing methods
Metallurgical factors or assumptions	The metallurgical process proposed and the appropriateness of that process to the style of mineralisation.	 The Concentrator comprises primary crushing, primary, secondary and tertiary grinding, magnetic separation and sulphur flotation. Concentrate is pumped by a slurry pipeline for drying and ship loading at the Port Albany. This methodology is standard process for magnetite operations.
	• Whether the metallurgical process is well-tested technology or novel in nature.	 This process uses standard methodologies which are well tested in the industry, in particular at Grange Resources' existing magnetite mine at Savage River in Tasmania.
	• The nature, amount and representativeness of metallurgical test work undertaken, the nature of the metallurgical domaining applied and the corresponding metallurgical recovery factors applied.	 As part of the Feasibility Study a programme of metallurgical drilling and pilot plant test work was undertake to mimic the proposed Concentrator design and to determine the metallurgical factors and Concentrate Magnetite recovery. The concentrate recovery is 0.981 x DTR which equates to 98.1% recovery of potential magnetically recoverable material. Concentrate recovery has a linear relationship with the Mineral Resource DTR
	Any assumptions or	 There are no metallurgical factors applied to the Ore Reserve mine schedule which determines what is

Criteria	JORC Code explanation	Commentary
	allowances made for deleterious elements.	 produced in concentrate except for Sulphur. Sulphur has been set at 0.08% on the basis of flotation test work completed to date. Tails Density has been set at 1.7 t/m3.
	• The existence of any bulk sample or pilot scale test work and the degree to which such samples are considered representative of the orebody as a whole.	 3 bulk samples for pilot plant testwork using drill core (22t, 27t and 41 t each) have been collected. All samples have been selected from drill core on regular spacing on section and along strike to be considered as representative of the Ore Reserve.
	• For minerals that are defined by a specification, has the ore reserve estimation been based on the appropriate mineralogy to meet the specifications?	 The Ore Reserve and metallurgical processing methodologies have taken into account the specification of the concentrate produced under the process defined in the Feasibility Study.
Environmental	The status of studies of potential environmental impacts of the mining and processing operation. Details of waste rock characterisation and the consideration of potential sites, status of design options considered and, where applicable, the status of approvals	 The Southdown Magnetite Mine has been assessed under Part IV of the Environmental Protection Act 1986 (WA). Environmental applications for the Southdown Magnetite and Kemaman Pellet Plant Project commenced in 2005 and primary environmental approvals gained since include the following: Southdown Magnetite mine, slurry pipeline to Albany and Albany Port infrastructure works for up to 11 Mt/a product. Ministerial Statement 816 dated 24 November 2009 approved the 6.6 to 7.0 Mt/a Southdown mining project. A further approval was granted under Section 45c of the Environmental Protection Act 1986 to increase production up to 11 Mt/a. Albany Port Authority's Port Expansion Project (dredging the entrance to Princess Royal Harbour

Criteria	JORC Code explanation	Commentary
	storage and waste dumps should be reported.	 for Environment issued Ministerial Statement 846 on 18 November 2010 approving the Albany Port Expansion Project. Albany Port Authority's Port Expansion Project Environment Protection and Biodiversity Conservation (EPBC) Act approval (EPBC Referral 2006/2540) dated 11 June 2010. Cape Riche Seawater Desalination Plant to construct and operate a 12GL/annum seawater desalination plant (approximately 30 km south of Southdown Magnetite mine) to supply water for the mine operations. Ministerial Statement 904 dated 18 July 2012. EPBC Act approval gained for the Muja to Wellstead Transmission Line in 2012 to provide power to the mine site during operations. State Clearing Permit approval gained for the Muja to Wellstead Transmission Line in 2012 under the Western Power Purpose Permit. The following approvals are also in progress: EPBC Act approval for the mine, slurry pipeline, associated infrastructure and desalination plant. The project was referred to the department of Sustainability, Environment, Water, Population and Communities (SEWPaC) who are now the Department of the Environment (DotE) in July 2011. Dewatering and offset studies are currently underway to progress this approval
		 Currently, there are two registered Native Title applications that cover the areas allocated for the Southdown Project in Australia. Consultation with the registered Native Title body, the South West Aboriginal Land and Sea Council (SWALSC), has been ongoing and will continue to feature. An Aboriginal heritage survey of the mine site in 2005/6, revealed a total of seven archaeological sites containing artefacts. All the sites have been identified, recorded and mapped under Section 16 Aboriginal Heritage Act 1972. A Section 18 application under Aboriginal Heritage Act 1972 was submitted for

Cuitoria		
Criteria	JORC Code explanation	Commentary
		Ministerial consideration. Ministerial consent to disturb the sites was received in January 2012. Follow up Aboriginal Heritage surveys were conducted during 2012 on areas not previously surveyed. A number of sites have been identified which will be the subject of another Section 18 application, planned for submission in 2014.
Infrastructure	 The existence of appropriate infrastructure: availability of land for plant development, power, water, transportation (particularly for bulk commodities), labour, accommodation; or the ease with which 	 The Feasibility Study included assessment, capital and operating costs for:- mine infrastructure and associated workshops, tails storage facility, concentrator, power, water supply by desalination plant, accommodation, slurry pipeline, concentrate dewatering facility and ship loading
	the infrastructure can be provided, or accessed.	• The majority of land acquisitions and agreements with various parties are in place or in an advanced state with no reason to expect they should not be finalised in a timely manner.
Costs	• The derivation of, or assumptions made, regarding projected capital costs in the study.	 Capital costs were estimated during the +/- 15% Feasibility Study using subject matter experts and supported by budget quotes in most circumstances.
	• The methodology used to estimate operating costs.	• The Whittle optimiser was used as a tool to derive an economic pit outline which is then used as the basis for mine design. The software uses profit maximisation algorithms to generate pit shells. The cost inputs used in the Whittle optimiser were based upon the Pre-Feasibility Study.
		• It is important to note that the Whittle Optimisation, almost in all pricing scenarios, tends to include the entire ore zone in the geological structure and has been modified as part of the mine design to

31

Criteria	JORC Code explanation	Commer	ntary				
		accommodate the environmental and mining permitting constraints and has been used a guide for mine design.					
		 The following costs used for the Whittle optimiser were based upon a concentrate production of 10,000,000 mtpa and derived from industry experience at Savage River and relevant consultants:- 					
		0	Mining: A\$	bcm = 6.72 – 0.013	9 × Bench RL (m).		
		0	Concentrat	tor: A\$/Milled Ore 1	Tonne = 7.61		
		0	Slurry Tran	sport: A\$/t concent	trate = 0.83		
		 Albany – Filtration/Dewatering: A\$/t concentrate = 1.52 					
		 Cape Riche – Desalination: A\$/t concentrate = 1.32 					
		 Albany – Materials Handling: A\$/t concentrate = 0.45 					
		 Albany – Port: A\$/t concentrate = 1.50 					
		0	Australian	Overheads: A\$/t co	ncentrate = 2.64		
		 No a adde inclu 	idditional d ed as part o ide in the C	ilution or mining rea f the Whittle proces Pre Reserve.	covery has been ss but is considered		
		 Geot optir 	technical pa miser were	arameters used in tl as follows:-	he Whittle		
		• Over	rall wall ang	gles in degrees			
		Area		North Wall	South Wall		
		Oxidise	d	20.8	21.4		
		Fresh		52.3	56.1		
		 Revenue factor 0.75 (pit shell 7) has 99% undiscounted cash flow, 97% of the ore tonnes and 91% of the waste tonnes compared the revenue factor 1.0 pit shell. Pit shell 7 was selected to base the final pit design on. The Whittle pit shell selected meets the requirement for the open pit area to be less than 400 ha as per Environmental Protection 					

Criteria	JORC Code explanation	Commentary
	present value (NPV) in the study, the source and confidence of these economic inputs including estimated inflation, discount rate, etc.	 following economic evaluation:- NPV10% of A\$1,008 million an ungeared IRR of 16.6%. Capex estimate A\$2.885 billion including EPCM, owners' costs and contingency of A\$0.535 billion. Total operating costs estimate of A\$58.5 per tonne of concentrate (excluding royalties) (Free On Board Port of Albany).
	 NPV ranges and sensitivity to variations in the significant assumptions and inputs. 	 The NPV is most sensitive to product price and exchange rate
Social	 The status of agreements with key stakeholders and matters leading to social licence to operate. 	 Extensive community consultation has occurred with impacted stakeholders and interested parties as part of the Feasibility Study and in gaining environmental approvals:- Adjacent landholders South West Aboriginal Land and Sea Council South Coast NRM City of Albany Albany Community Great Southern Economic Development Commission Wellstead Community Albany Aviation Community Consultation Group Munda Biddi Trail Working group Gnowangerup Shire
Other	 To the extent relevant, the impact of the following on the project and/or on the estimation and classification of the Ore Reserves: Any identified material naturally 	 No material naturally occurring risks have been identified to date which may impact the Ore Reserve.

Criteria	JORC Code explanation	Commentary
	• The status of material legal agreements and marketing arrangements.	 All agreements and arrangements are well advanced and will be concluded once the Project reaches the Financial Investment Decision.
	 The status of governmental agreements and approvals critical to the viability of the project, such as mineral tenement status, and government and statutory approvals. There must be reasonable grounds to expect that all necessary Government approvals will be received within the timeframes anticipated in the Pre-Feasibility or Feasibility study. Highlight and discuss the materiality of any unresolved matter that is dependent on a third party on which extraction of the reserve is contingent. 	 The majority of mining tenements are in place. Two aspects are outstanding – a general purpose lease over the processing area, and a miscellaneous licence over the desalination pipeline. Both tenements will be progressed once negotiations with the relevant land owner are concluded. Several environmental approvals are actively being progressed. There are no impediments expected for their approval. Secondary approvals such as the Works Approval, Project Management Plan and Mining Proposal will be progressed once the project passes FID, with no impediments to their ultimate approval foreseen at this stage.
Classification	• The basis for the classification of the Ore Reserves into	• All Measured Resources have been converted to Proven Ore Reserves and all Indicated Resources have been converted to Probable Ore Reserves within the

GRANGE

Competent Person Statements

The information in this report that relates to Exploration Results or Mineral Resources is based on information compiled by Mr Michael Everitt, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy, who is a full time employee of Grange Resources and who holds shares in Grange Resources as part of the company incentive scheme.

Mr Everitt has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Everitt consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Ore Reserves is based on information compiled by Mr Ross Carpenter, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy, who is a full time employee of Grange Resources and who holds shares in Grange Resources as part of the company incentive scheme.

Mr Carpenter has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Carpenter consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

-ENDS-

For further information, please contact:

Investors: Wayne Bould Managing Director & CEO Grange Resources Limited + 61 3 6430 0222 Or visit www.grangeresources.com.au

DRILL HOLE DATA

Pursuant to the guidelines established in the JORC Code (2012 Edition), the following table represents the drill hole intercepts which support the Mineral Resource estimate for the Southdown Project.

8.

Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
CZ	PMS47	639,074.7	6,176,729.1	150.8	- 90.0	360.0	17.73	41	41
CZ	PMS48	639,576.4	6,176,805.6	138.4	- 90.0	360.0	23.69	48	48
CZ	PMS49	639,576.9	6,176,845.6	140.3	- 90.0	360.0	23.75	63	63
CZ	SDD11	639,628.6	6,176,731.7	136.0	- 60.6	353.6	74.19	216.86	237.85
CZ	SDD12	639,423.7	6,176,727.7	138.4	- 59.7	355.9	51.73	196.99	237.7
CZ	SDD131	639,828.4	6,176,791.3	140.5	- 60.0	353.0	69.27	188.09	194.3
CZ	SDD132	639.615.1	6.176.830.9	139.1	- 60.0	353.0	23.48	102.45	152.3
CZ	SDD133	639,448,1	6,176,529,9	136.4	- 60.0	353.0	297.97	401.49	411.3
C7	SDD134	639 259 6	6 176 501 2	135.9	- 60.2	342.7	288 54	387.89	396.6
C7	SDD135	639.072.9	6 176 460 0	135.4	- 60.0	352.9	301 59	399.1	413.2
C7	SDD135	639 234 1	6 176 701 9	144.4	- 56.6	349.9	47.04	173.29	191.3
C7	SDD130	639 244 0	6 176 651 1	140.7	- 59.9	352.0	103.9	231.82	244.8
C7	SDD138	639,036,3	6 176 709 6	149.1	- 60.0	353.0	27.78	137.81	164.4
C7	SDD130	639.042.9	6 176 660 5	144.2	- 60.2	349.6	50.69	190.14	212.6
CZ CZ	SDD133	620 441 0	6 176 570 2	195.0	50.6	251.6	228.02	252.02	402.6
62	SDD14	620,050,4	6 176 610 2	140 5	- 59.0	252.0	102.52	333.03	402.0
02	500140	639,050.4	6,176,610.3	140.5	- 58.7	352.0	105.55	257.01	246.5
CZ	SDD141	638,829.0	6,176,692.7	146.4	- 60.0	353.0	36.15	116.09	144.5
02	SDD142	038,837.9	6,176,642.9	142.8	- 60.4	353.0	120.50	215.28	225.5
	SDD143	638,844.5	6,176,595.1	139.6	- 60.7	353.1	120.68	258.38	265.9
CZ	SDD145	638,733.4	6,1/6,641./	140.9	- 60.0	353.0	38.2	137.37	146.4
CZ	SDD15	639,249.0	6,176,601.3	139.1	- 59.6	354.0	161.18	287.8	330.7
CZ	SDD16	639,254.0	6,176,552.0	137.7	- 59.2	353.0	217.3	330.38	378.7
CZ	SDD163	639,443.2	6,176,573.3	135.7	- 60.2	352.7	223.64	346	370.7
CZ	SDD17	639,428.3	6,176,678.5	136.5	- 59.9	352.3	112.96	249.84	297.6
CZ	SDD172	639,935.0	6,176,688.1	136.3	- 60.5	355.4	183.28	297.52	305.3
CZ	SDD18	639,840.3	6,176,691.6	136.1	- 61.3	352.7	162.74	290.77	331.6
CZ	SDD180	639,647.8	6,176,583.0	134.1	- 60.0	353.0	271.61	375.75	426.6
CZ	SDD19	639,636.9	6,176,680.0	135.0	- 60.9	353.4	136.43	295.59	310.6
CZ	SDD192	640,052.0	6,176,660.0	135.0	- 60.0	353.0	240.8	332.27	348.3
CZ	SDD193	639,230.8	6,176,746.9	149.2	- 60.0	353.7	18.71	139.88	168.9
CZ	SDD20	639,063.4	6,176,511.6	136.9	- 60.0	353.5	217.6	340.34	372.7
CZ	SDD209	639,410.8	6,176,821.0	144.4	- 60.0	355.7	25.64	94.59	119.4
CZ	SDD212	639,225.2	6,176,792.7	153.5	- 60.9	351.9	23.48	98.61	125.4
CZ	SDD257	639,029.8	6,176,753.4	153.5	- 59.8	353.4	19.36	94.35	102.65
CZ	SDD258	639,129.6	6,176,772.9	154.8	- 59.5	350.4	15.47	98.47	108.4
CZ	SDD259	639,142.0	6,176,686.4	145.0	- 60.3	350.2	44.89	182.57	190.47
CZ	SDD260	639,160.0	6,176,516.4	136.5	- 60.9	353.6	246.62	356.74	375.73
CZ	SDD261	639,317.2	6,176,773.9	146.6	- 60.7	351.8	25.27	127.35	140.6
CZ	SDD262	639,343.3	6,176,550.5	137.0	- 60.3	351.8	247.68	366.32	374.97
CZ	SDD263	639,519.8	6,176,836.9	141.5	- 61.8	345.4	30.36	89.39	102.4
CZ	SDD264	639,530.5	6,176,745.6	137.3	- 59.9	353.9	55.64	199.67	280.57
CZ	SDD265	639,551.4	6,176,561.3	133.9	- 60.7	352.2	285.93	390.35	401.5
CZ	SDD269	639,963.7	6,176,805.1	144.2	- 61.3	278.5	137.46	201.31	201.31
CZ	SDD47	638,850.1	6,176,543.8	137.6	- 60.9	355.1	178.79	347.86	361.2
CZ	SDD48	638,952.2	6,176,545.8	138.1	- 60.0	350.0	152.27	284.41	288.8
CZ	SDD49	639,055.6	6,176,561.2	138.3	- 62.0	352.5	153.23	282.28	306.5
CZ	SDD50	639.154.2	6.176.584.7	138.9	- 60.5	354.7	145.53	269.8	324.6
CZ	SDD51	639,335.4	6,176,633.7	138.1	- 62.3	353.7	141.43	262.42	273.6
CZ	SDD52	639.435.4	6,176,628,6	135.9	- 61.2	352.7	168.61	299.62	327.6
CZ	SDD53	639 542 2	6,176,639,4	134.6	- 59.2	352 5	167.35	306.01	338.2
C7	SDD54	639 643 6	6,176,627,7	134.9	- 617	353.9	220.88	346.05	366.5
C7	SDD55	639 738 4	6,176,656,8	134.7	- 61.4	350.8	188 29	315 75	322.6
C7	SDD56	639.835.1	6.176 742 6	138.7	- 597	353.4	97.12	223.3	2233
C7	SDD 57	639.845.1	6 176 641 0	134.4	- 58.2	351.2	216.18	324 15	330.9
C7	\$0057	630 051 7	6 176 590 9	137.4	- 62.0	351.2	304.74	381 //7	300.3
C7	SDDS	640.060.9	6 176 582 2	122.5	- 62.0	353.0	3// 69	205.2	/122.6
C7	50000	630.850.2	6 176 505 0	122.0	- 60.0	252.0	292.27	370 50	902 6
02	5006/	630 631 0	6 176 702 6	197 5	- 60.0	355.0	202.37	1/10/4	164.1
	30000	0.070/19	0.0/0/7/0				21.39	140.4	104

8.

Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
CZ	SDD89	639,416.9	6,176,776.2	140.9	- 60.0	353.0	27.25	138.58	159.5
CZ	SDD90	639,328.7	6,176,683.8	140.0	- 61.2	354.9	89.75	219.15	237.4
EZ	PMS51	640,075.3	6,176,728.6	138.6	- 90.0	360.0	28.28	35	35
EZ	SDD1	641,628.7	6,176,952.6	135.8	- 61.2	352.7	17.65	141.51	303.95
EZ	SDD10	640.047.8	6,176,681.0	135.8	- 60.3	352.8	19.51	150.74	215
EZ	SDD100	641.225.0	6.176.868.4	143.0	- 60.8	357.2	50.38	144.02	175.8
EZ	SDD101	641.141.3	6.176.758.1	135.6	- 59.5	355.2	171.74	262.25	276.5
F7	SDD102	641 032 9	6 176 814 4	140.0	- 60.5	347.8	68.78	187 29	204.6
 F7	SDD103	641 045 7	6 176 715 0	134.9	- 59.9	351.9	194.66	283.63	297.7
F7	SDD100	640.941.1	6 176 738 9	136.2	- 60.3	346.4	138.14	238.05	246.4
F7	SDD104	640,836,1	6 176 790 4	140.2	- 60.1	354.4	50.95	172.76	204.6
F7	SDD105	640,848,1	6 176 691 2	136.3	- 60.1	355.3	171.1	263.91	285.8
F7	SDD100	640 742 0	6 176 720 8	137.4	- 50.3	351.0	111.09	200.01	259.6
E7	SDD107	640,633,6	6 176 771 9	1/0 1	- 60.2	3/81	40.01	158	196.7
EZ	SDD108	640,635.6	6,176,771.9	190.1	- 00.2	346.1	40.01	130	100.7
EZ	500109	640,646.5	6,176,671.0	130.7	- 00.2	345.1	155.05	246.77	2/0./
EZ	500110	640,431.4	6,176,692.9	157.7	- 59.7	350.9	/9.85	201.43	221.5
EZ	SDD111	640,512.4	6,176,692.9	137.1	- 59.6	356.7	9/	212.53	228.8
EZ	SUD112	641,849.8	6,176,808.7	151.7	- 61.2	354.6	2/1./1	585.96	408.2
EZ	SDD113	642,139.8	6,176,845.9	131.9	- 60.5	350.5	343.72	421.1	425
EZ	SDD114	641,826.4	6,177,002.0	134.1	- 60.6	353.3	16.78	131.57	150.3
EZ	SDD115	641,622.9	6,177,002.5	136.5	- 60.1	346.4	16.1	79.87	86.8
EZ	SDD116	641,395.7	6,176,947.9	141.3	- 59.6	350.8	14.87	83.7	126.8
EZ	SDD117	641,022.8	6,176,913.9	150.3	- 60.5	351.3	19.02	77.46	107.2
EZ	SDD118	640,834.1	6,176,843.7	144.0	- 60.3	351.1	15.03	115.8	134
EZ	SDD119	640,418.0	6,176,793.6	145.6	- 59.9	352.2	13.85	95.37	120.7
EZ	SDD120	640,239.4	6,176,727.8	140.6	- 60.2	350.9	26.89	135.15	153.7
EZ	SDD13	640,259.5	6,176,580.0	133.2	- 60.0	353.0	188.49	270.22	310.2
EZ	SDD130	640,040.7	6,176,730.9	138.6	- 60.0	352.6	26.16	97.45	109.1
EZ	SDD164	640,434.6	6,176,635.3	135.1	- 60.8	353.5	148.66	249.85	275.6
EZ	SDD165	641,028.6	6,176,856.3	144.3	- 60.0	353.0	22.09	137.35	144.9
EZ	SDD166	641,844.7	6,176,855.0	131.6	- 59.1	350.8	164.19	292.28	297.7
EZ	SDD171	640,442.7	6,176,591.3	133.9	- 60.9	351.8	216.62	291.6	308.2
EZ	SDD172	639,935.0	6,176,688.1	136.3	- 60.5	355.4	35.7	84.19	305.3
EZ	SDD181	640,234.7	6,176,772.1	142.9	- 60.5	351.0	22.2	84.92	123
EZ	SDD182	640,411.2	6,176,839.2	148.4	- 59.8	349.4	20.75	46.65	75
EZ	SDD183	640,620.1	6,176,868.2	146.8	- 59.4	351.2	7.35	56.57	84
EZ	SDD184	640,828.6	6,176,888.6	148.3	- 60.4	351.2	10.58	68.39	90
EZ	SDD185	641,821.6	6,177,048.5	134.2	- 59.9	351.4	21.5	64.51	78.5
EZ	SDD186	641.661.3	6,176,709,5	132.3	- 59.9	352.5	337	422.17	456.3
EZ	SDD187	641.423.3	6.176.675.9	134.2	- 60.3	353.7	309.48	389.69	396.6
EZ	SDD188	641.252.5	6,176,675,1	135.0	- 59.4	354.2	267.19	340.95	363.8
EZ	SDD189	641.055.5	6.176.621.8	135.2	- 58.9	352.3	313.56	368.19	390.3
	SDD190	640,858,0	6 176 601 8	135.5	- 60.2	354.0	288.99	346 59	369.9
 F7	SDD192	640.052.0	6 176 660 0	135.0	- 60.0	353.0	29.3	181.98	348.3
F7	SDD194	641 920 8	6 176 961 2	132.3	- 59.4	353.3	124	218.06	241.8
F7	SDD104	6/1 915 3	6 177 005 8	132.0	- 50.5	1.0	1/13/15	1/18 7	1/187
E7	SDD195	641,915.5	6 176 970 7	121.0	- 55.5	252.0	107.20	222.00	257.2
E7	500137	641,934.0	6 176 051 2	131.0	- 60.5	353.0	137.23	103.20	216.7
E7	5002	642,049,0	6 176 900 4	130.9	- 60.5	251.1	42.0	242.0	210.7
EZ E7	500204	642,049.0	6,176,690.4	130.8	- 00.5	254.2	203	201.05	350.9
EZ	500215	640,654.0	6,176,004,9	100.0	- 59.5	354.2	200.14	521.00	300.3
EZ	500292	640,549.2	0,1/0,824.8	144.5	- 60.3	0.5	15.57	102.02	123.6
EZ	SDD293	640,549.5	6,176,769.4	140.9	- 49.7	359.5	20.43	133.03	410
	5003	641,398.9	0,1/0,899.0	138.8	- 60.5	349.7	13.49	143.23	210.8
	SDD302	641,148.4	0,1/6,838.2	141.3	- 50.5	1.2	58.18	1/1.12	408.78
EZ	SDD304	641,980.2	6,1/7,045.0	132.5	- 50.5	232.5	126.71	260.7	320.77
EZ	SDD306	641,551.1	6,1/6,863.2	134.4	- 61.6	0.4	102.68	235.21	253.11
EZ	SDD308	640,745.7	6,176,668.6	136.4	- 60.7	1.3	177.46	274.02	295.16
EZ	SDD309	640.549.3	6.176.738.9	138.8	- 59.8	359.1	54.55	174.21	200.13

N.

Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
EZ	SDD313	640,348.9	6,176,799.7	145.5	- 60.7	1.4	9.2	79.72	110
EZ	SDD319	640,349.2	6,176,765.2	143.4	- 60.1	358.4	10.17	115.59	150.48
EZ	SDD322	640,349.6	6,176,715.7	140.1	- 60.0	359.1	38.77	168.4	190.16
EZ	SDD326	640,349.2	6,176,666.3	136.9	- 60.7	1.4	96.1	209.94	231.46
EZ	SDD327	640,749.4	6,176,816.6	142.2	- 60.5	1.8	33.98	132.61	153.4
EZ	SDD329	640,749.0	6,176,766.8	139.1	- 60.4	357.9	61.04	181.84	204.58
EZ	SDD331	641.148.0	6.176.807.4	138.4	- 60.5	358.2	111.85	206.54	228.45
EZ	SDD338	640,949.0	6.176.838.3	142.6	- 60.2	2.1	22.52	142.67	174.31
	SDD345	640 948 8	6 176 786 1	138.6	- 59.9	07	86.27	200.86	228 53
 F7	SDD4	641 239 1	6 176 767 8	135.3	- 60.3	351.7	175.89	258.57	315.9
F7	SDD4	640,424,3	6 176 741 2	141.3	- 60.8	353.0	24.08	153 71	200.7
F7	SDD59	640.054.3	6 176 632 0	133.8	- 62.0	353.0	82.64	185.71	210.5
F7	SDD6	640 521 3	6 176 642 3	135.6	- 60.0	354.0	156.43	258.86	301.7
F7	SDD61	640 158 0	6 176 581 0	134.0	- 61.3	359.3	165.75	254.58	276.7
E7	SDD63	640,256.5	6 176 538 7	134.0	- 60.0	252.0	262.37	212 51	270.7
E7	30003 SDD64	640,200.3	6 176 691 0	120.0	- 00.0	253.0	202.37	101	107.0
62	50004	640,247.2	0,170,081.0	136.0	- 59.6	352.5	150.04	101	197.9
EZ	SDDGS	640,353.2	6,176,614.5	134.7	- 59.9	349.7	120.94	200.00	291.0
EZ	SDD66	640,437.5	6,1/6,641.5	135.4	- 60.1	353.8	139.79	244.33	255.65
EZ	SDD67	640,448.8	6,176,544.4	134.3	- 60.0	353.0	281.16	321.25	330.2
EZ	SDD68	640,626.4	6,176,824.1	143.6	- 59.9	352.4	14.31	103.71	159.7
EZ	SDD69	640,651.5	6,176,620.1	135.9	- 59.0	351.1	213.64	295.04	345.6
EZ	SDD7	640,640.0	6,176,723.4	137.9	- 60.3	355.4	94.07	204.56	226.9
EZ	SDD70	640,844.3	6,176,742.4	137.6	- 60.0	356.5	112.17	216.42	246.6
EZ	SDD71	640,854.4	6,176,647.2	135.6	- 60.9	356.9	228.37	308.2	335.7
EZ	SDD72	641,028.3	6,176,862.0	144.9	- 60.2	354.9	20.2	134.73	170.1
EZ	SDD73	641,040.0	6,176,768.8	136.5	- 60.3	349.1	131.3	234.33	282.6
EZ	SDD74	641,049.3	6,176,666.4	134.4	- 60.0	352.9	254.59	330.28	351.5
EZ	SDD75	641,225.1	6,176,916.5	147.5	- 60.7	354.0	4.37	105.69	123.6
EZ	SDD76	641,235.8	6,176,820.1	138.3	- 60.4	355.8	114.06	200.47	234
EZ	SDD77	641,331.8	6,176,822.1	136.2	- 61.2	351.5	110.96	222.87	242.4
EZ	SDD78	641,412.3	6,176,800.5	134.1	- 60.5	352.9	147.04	263.95	284.1
EZ	SDD79	641,421.7	6,176,699.0	133.9	- 60.8	348.5	259.9	348.29	377.3
EZ	SDD8	642,047.4	6,176,883.0	130.7	- 60.8	324.1	226.49	363.69	406.7
EZ	SDD80	641,542.9	6,176,761.5	132.9	- 60.6	355.3	231.85	330.15	344.2
EZ	SDD81	641,636.6	6,176,902.3	134.7	- 59.2	352.2	69.63	198.54	215.6
EZ	SDD82	641,741.4	6,176,797.8	132.1	- 60.5	351.3	218.98	331.3	347.1
EZ	SDD83	641,842.6	6,176,860.2	131.7	- 60.2	350.6	175.22	314.99	335.1
EZ	SDD84	641,927.6	6,176,917.0	132.0	- 60.5	351.1	132.71	273.94	281
EZ	SDD86	640.252.8	6.176.633.1	135.6	- 60.0	356.3	119.86	225.96	249.9
EZ	SDD9	641,642,6	6,176,851,6	133.4	- 60.5	351.4	140.18	268.03	311.7
E7	SDD91	641 246 6	6 176 720 2	134.4	- 60.0	350.8	225.13	296.95	318.5
EZ	SDD92	641 401 8	6 176 851 2	135.8	- 60.5	356.2	63.1	203.46	242.4
 F7	SDD93	641 415 7	6 176 751 5	133.9	- 60.0	354.6	206.22	309.8	320
 F7	SDD94	641 536 3	6 176 812 5	133.2	- 59.4	357.3	168.97	278.64	293
F7	SDD94	641 649 3	6 176 804 7	132.4	- 60.5	355.3	204.13	315 38	375.4
E7	SDD95	641,657.0	6 176 755 1	132.4	- 60.7	352.8	265.98	366.03	390.2
E7	50050	641,037.0	6,176,755.1	122.4	- 00.7	352.8	200.58	300.03	350.2
557	DD055DN001	642,636.5	6,170,904.5	132.0	- 60.1	242.0	100.11	240.79	200.2
557	DD053DN001	642,422.0	6 177 252 6	120.9	- 00.2	242.3	66.26	154.53	170
FEZ	DD053DN002	643,390.2	0,1/7,252.0	129.0	- 01.1	343.2	60.20	104.52	1/9
FEZ	DD05SDN003	644,202.2	6,177,427.0	128.1	- 60.6	345.7	69.36	142.76	161.4
FEZ	DD05SDN004	644,261.1	6,177,231.5	128.0	- 60.3	340.5	191.49	412.36	421.3
FEZ	DD05SDN005	645,990.3	6,1/8,005.3	125.7	- 59.6	341.8	53.34	124.84	229.4
FEZ	DDUSSDN006	646,026.0	6,1/7,8/0.6	124.5	- 58.4	340.0	56.52	315.05	350
FEZ	DD05SDN007	645,672.5	6,1/7,935.9	128.2	- 60.6	342.2	28.05	/4.56	185.1
FEZ	DD05SDN008	645,689.4	6,177,870.2	126.8	- 58.9	349.6	38.62	164.48	245
FEZ	DD05SDN009	645,426.1	6,177,800.5	128.4	- 59.2	336.8	53.55	141.13	224
FEZ	DD05SDN010	644,837.4	6,177,544.3	127.6	- 60.0	349.1	72.31	248.51	263
FEZ	DD06SDN012	644,881.0	6,177,434.3	126.5	- 60.9	344.6	152.23	409.52	431.2

Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
FEZ	DD06SDN013	645.470.5	6.177.658.2	127.3	- 59.5	347.3	121.34	357.6	377.5
FF7	DD06SDN014	642 436 7	6 177 113 2	132.4	- 60.7	343.5	25.17	56.95	192.3
FF7	DD06SDN015	642 445 0	6 176 899 9	130.3	- 61.4	339.0	234.74	354.43	379
FE7	DD06SDN016	646 736 4	6 177 935 4	122.9	- 59.6	341.7	120.82	302.7	302.7
FE7	DD06SDN017	646,730.4	6 178 074 1	125.2	50.0	257.4	60.72	178.48	302.7
FE7	DD06SDN017	642,463,1	6 176 031 8	120.5	- 61.3	354.6	201.33	340.16	372.7
557	DD003DN018	645,405.1	6 177 740 1	130.0	- 01.5	242.4	100.75	340.10	372.3
FEZ	DD065DN020	645,710.5	6,177,740.1	120.0	- 59.5	343.4	109.75	333	335
FEZ	DD06SDN021	642,670.2	6,177,115.0	151.7	- 59.0	350.0	55.75	158.52	234.3
FEZ	DD06SDN022	644,227.2	6,177,335.0	127.8	- 61.3	349.5	96.63	261.16	316
FEZ	DD06SDN023	642,/10.1	6,177,044.6	130.9	- 58.4	334.7	98.24	229.55	283.5
FEZ	PMS50	641,978.3	6,176,985.5	132.2	- 90.0	360.0	46.09	47	47
FEZ	PMS58	645,588.5	6,177,710.5	128.9	- 55.0	360.0	102.16	113.6	113.6
FEZ	PMS59	641,977.4	6,176,914.6	131.2	- 55.0	360.0	110.85	116	116
FEZ	SDD113	642,139.8	6,176,845.9	131.9	- 60.5	350.5	244.3	312.53	425
FEZ	SDD113	642,139.8	6,176,845.9	131.9	- 60.5	350.5	317.38	329.1	425
FEZ	SDD156	642,026.6	6,177,032.4	132.1	- 60.5	346.0	25.18	106	132.7
FEZ	SDD194	641,920.8	6,176,961.2	132.3	- 59.4	353.3	49.82	124	241.8
FEZ	SDD195	641,915.3	6,177,005.8	132.9	- 59.5	1.0	18.46	111.1	148.7
FEZ	SDD196	641,909.7	6,177,050.8	132.7	- 59.7	356.8	11.81	57.21	100.8
FEZ	SDD198	642,234.9	6,177,024.1	131.8	- 59.6	358.9	25.11	139.06	178.8
FEZ	SDD199	642,227.7	6,177,067.3	132.2	- 60.4	351.0	25.19	84.5	112.9
FEZ	SDD200	642.241.3	6.176.978.9	130.9	- 61.8	350.8	55.08	206.84	221.9
FEZ	SDD204	642,049,0	6 176 890 4	130.8	- 60.5	351.1	145.88	235.16	356.9
FEZ	SDD304	641 980 2	6 177 045 0	132.5	- 50.5	232.5	23.36	126.62	320.77
FF7	SDD304	641 980 2	6 177 045 0	132.5	- 50.5	232.5	126.62	126 71	320.77
FE7	SDD98	642,033,5	6 176 981 5	131.7	- 60.0	353.0	28.43	172 11	182.3
FE7	50050	642,035.5	6 176 036 6	131.7	- 60.0	353.0	20.43	230.69	202.3
667	50033 50034	644,600.0	6 177 227 0	101.0	- 00.0	240.2	170.54	250.09	292.3
FEZ	SDN024	644,000.0	6,177,037.0	127.0	- 01.1	346.3	218.2	465.09	492.4 E16.16
FEZ	SDN025	645,206.0	6,177,497.0	125.4	- 01.1	1.2	216.2	404.09	310.10
FEZ	SDN020	646,397.9	0,177,946.7	122.4	- 00.0	358.4	150.42	340.09	300.03
FEZ	SDINU27	645,200.9	6,177,700.4	127.0	- 58./	359.6	08.50	212.27	509.2
FEZ	SDN028	642,999.9	6,176,899.0	130.3	- 60.0	350.5	368.6	466.3	531.4
FEZ	SDN029	643,006.0	6,177,097.7	130.1	- 60.0	354.9	121.6	240.8	338.9
FEZ	SDN030	645,203.2	6,177,600.2	126.5	- 59.7	357.3	91.48	326.47	444.2
FEZ	SDN031	646,400.6	6,177,846.8	122.1	- 59.8	359.4	263.14	470.91	478.58
FEZ	SDN032	643,002.7	6,176,998.1	130.1	- 60.5	0.1	231.67	356.35	396.41
FEZ	SDN034	643,796.4	6,177,294.1	128.7	- 60.5	357.8	69.26	222.6	348.3
FEZ	SDN035	643,808.9	6,177,197.4	128.5	- 60.2	357.8	164.65	343.01	384.4
FEZ	SDN036	643,009.1	6,177,206.6	131.0	- 60.2	0.5	64.63	93.8	345.62
FEZ	SDN037	643,800.0	6,177,094.4	128.6	- 60.8	359.1	316.47	472.08	498.28
FEZ	SDN038	643,798.4	6,177,394.8	131.3	- 60.9	358.4	71.72	102.89	252.64
FEZ	SDN039	643,199.6	6,177,248.1	130.6	- 60.0	358.9	55.76	84.98	198.61
FEZ	SDN040	643,007.7	6,177,151.4	130.6	- 60.1	360.0	51.28	173.81	231.58
FEZ	SDN041A	643,197.3	6,177,051.8	130.0	- 62.5	359.0	208.09	352.8	382
FEZ	SDN042	643,199,6	6,177,198,8	130.4	- 59.5	359.7	77.45	152.51	234.6
FF7	SDN043	643 004 2	6 177 047 0	130.0	- 60.0	01	172 42	301.07	328 56
FF7	SDN044	646 399 0	6 178 051 0	123.0	- 59.4	359.2	127.81	254.87	283.82
FF7	SDN045	643 200 3	6 177 102 5	130.2	- 59.8	356.9	131.5	2761	336.5
FE7	SDN046	643 199 4	6 177 000 1	130.5	- 61.3	357.1	284.54	422.65	474.05
FE7	SDN040	643 100 0	6 177 148 9	120.9	- 61.1	357.1	75.01	225.05	250 55
667	SDN04/	642,002.0	6 176 051 0	129.0	- 60.1	339.2	217.20	415 50	4500
FE2	5010048	642,005.0	6 176 040 7	120.1	- 00.1	1.0	317.38	410.09	450.5
FEZ	SDIN049	643,200.3	0,1/0,948./	129.7	- 60.3	359.1	332.73	450.23	501.5
VVZ	PIVIS1	636,900.2	0,1/0,505.5	155.2	- 90.0	360.0	29.16	49	49
WZ	PIMS11	638,124.0	6,1/6,862.5	155.0	- 90.0	360.0	17.56	42.42	80.2
WZ	PMS12	638,136.3	6,176,842.0	154.4	- 90.0	360.0	6.95	73	73
WZ	PMS13	638,153.5	6,176,812.3	152.2	- 90.0	360.0	12.64	102.75	102.75
WZ	PMS15	637,868.3	6,176,724.8	152.2	- 90.0	360.0	31.35	72	72
WZ	PMS16	638,182.0	6,176,747.4	147.1	- 55.0	327.7	24.5	137.32	154.9

Vac PNB12 657.842 6.176.784 NL DIP AZMUTH FROM TO HOLDEPTH WZ PNB16 637.659.7 6.176.688.8 152.1 90.0 360.0 23.88 53.5 53.5 WZ PNB16 637.859.7 6.176.69.1 151.0 90.0 360.0 23.84 53.5 53.5 WZ PNK20 638.80.8 6.176.59.1 147.2 90.0 360.0 147.5 40 90.0 WZ PNK22 638.332.0 6.176.710.1 147.2 90.0 360.0 147.5 40 90.0 WZ PNK22 638.321.0 6.176.751.4 146.7 >55.0 360.0 31.01 95.72 99.85 638.827.1 6.176.754.4 156.0 360.0 31.41 19.20 190.0 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2 146.2										
WZ PMS15 637,642.6 6,176,749.2 155.3 90.0 360.0 225.9 45.3 45.3 WZ PMS19 637,338.2 6,176,650.4 151.0 90.0 360.0 22.88 53.5 WZ PMS20 658,680.8 6,176,511.1 152.2 55.0 22.7 56.0 100.5 96 125.4 WZ PMS21 638,331.9 6,176,738.2 147.1 55.0 360.0 175.1 146.2 146.2 WZ PMS25 638,27.4 6,176,738.2 143.9 - 55.0 360.0 52.1 146.2 146.2 146.2 WZ PMS26 637,82.7.1 6,176,075.4 156.2 - 55.0 360.0 31.44 112.2 130.0 WZ PMS26 637,82.7.6 6,176,656.6 150.5 - 55.0 360.0 31.44 112.2 130.0 WZ PMS26 637,82.7.6 6,176,656.6 125.5 56.0 360.0 13.44 119.2 130	Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	TO	HOLE DEPTH
WZ PMS19 637,697.7 6,176,683.8 152.1 90.0 360.0 21.47 42 42 WZ PMS30 635,6890.8 6,176,541.7 153.2 - 55.0 22.7 36.03 105.96 125.4 WZ PMS21 658,830.8 6,176,791.2 146.7 - 50.0 360.0 17.75 145.22 1498. WZ PMS23 658,837.2 146.7 - 55.0 360.0 31.01 95.72 191.05 WZ PM235 658,837.4 6,176,753.4 1462.1 55.0 360.0 31.01 95.72 190.8 WZ PM256 637,825.7 6,176,753.4 1462.1 55.0 360.0 34.42 148.8 191.1 WZ PM252 637,825.7 6,176,656.4 158.8 - 90.0 360.0 171.1 79 79 WZ PM830 637,671.4 6,176,670.7 156.3 - 55.0 360.0 171.1 79 79 WZ	WZ	PMS17	637,842.6	6,176,749.2	155.3	- 90.0	360.0	25.59	45.3	45.3
WZ PNX39 637,382.2 6,176,650.4 151.0 90.0 360.0 21.47 44.2 44.2 WZ PNX30 658,680.8 6,176,821.0 147.2 90.0 360.0 114.75 40 40 WZ PNX321 658,332.6 6,176,738.2 148.9 -55.0 360.0 75.8 145.22 149.8 WZ PNX25 658,327.4 6,176,738.2 148.9 -55.0 360.0 51.9 146.2 146.2 WZ PNX26 653,727.4 6,176,754.4 150.2 -55.0 360.0 31.44 11.2 21.80 WZ PNX28 653,757.4.8 6,176,656.6 150.5 -55.0 360.0 17.1 79 79 WZ PNX30 637,577.4 6,176,656.4 152.7 55.0 360.0 27.3 112.07 112.7 WZ PNX31 637,773.8 6,176,656.4 152.7 55.0 360.0 27.3 112.07 112.7 112.7	WZ	PMS18	637,659.7	6,176,683.8	152.1	- 90.0	360.0	23.88	53.5	53.5
WZ PMS20 656,890.8 6,176,541.7 133.2 -55.0 22.7 360.3 105.96 125.4 WZ PMS21 658,333.2 6,176,791.2 146.7 -55.0 360.0 17.75 140 0.40 WZ PM623 658,332.2 6,176,781.2 146.7 -55.0 360.0 31.01 95.72 99 WZ PM626 637,827.1 6,176,754.4 149.3 -55.0 360.0 31.01 95.72 89 WZ PM626 637,827.6 6,176,754.4 152.7 55.0 360.0 34.41 119.2 140 WZ PM626 637,724.6 6,176,056.7 156.3 55.0 360.0 51.31 370.07 132.8 WZ PM631 637,072.6 6,176,056.1 152.7 55.0 360.0 31.11 120.7 111.7 707 132.8 WZ PM631 637,072.6 6,176,056.1 152.6 360.0 31.11 144.34 1120.7 </td <td>WZ</td> <td>PMS19</td> <td>637,338.2</td> <td>6,176,650.4</td> <td>151.0</td> <td>- 90.0</td> <td>360.0</td> <td>21.47</td> <td>42</td> <td>42</td>	WZ	PMS19	637,338.2	6,176,650.4	151.0	- 90.0	360.0	21.47	42	42
WZ PMS21 638,312.0 6,176,821.0 147.2 90.0 360.0 1147.5 40 40 WZ PMS23 638,332.6 6,176,738.2 143.9 -55.0 360.0 75.1 145.2 149.8 WZ PMS25 638,327.4 6,176,738.2 143.9 -55.0 360.0 51.01 95.72 99 WZ PMS26 637,827.1 6,176,755.4 155.0 360.0 51.24 144.2 146.2 146.2 WZ PMS28 637,827.4 6,176,656.6 150.5 -55.0 360.0 51.33 177.0 122.1 130 WZ PMS28 637,757.9 6,176,610.2 144.1 55.0 360.0 51.33 177.07 132.8 WZ PMS31 637,72.9 6,176,616.1 159.6 55.0 360.0 22.1 12.07 1117 WZ PMS31 637,072.8 6,176,616.1 159.6 55.0 360.0 22.11 12.43 12.07	WZ	PMS20	636,890.8	6,176,541.7	153.2	- 55.0	22.7	36.03	105.96	125.4
WZ PM522 633333 6,176,791.2 146.7 - 55.0 3600 17.58 145.22 149.23 WZ PM525 6333319 6,176,753.2 143.9 - 55.0 3600 31.01 99.72 99 WZ PM526 637,825 6,176,755.4 156.2 - 55.0 3600 31.01 99.72 99 WZ PM526 637,825 6,176,755.4 156.2 - 55.0 3600 54.22 144.83 191.0 WZ PM526 637,825.7 6,176,556.2 155.0 3600 13.14 197.0 79 WZ PM531 637,571.9 6,176,566.1 158.1 145.1 55.0 3600 32.11 112.07 117 WZ PM536 637,073.8 6,176,564.2 152.7 55.0 3600 32.11 12.07 117 WZ PM536 637,073.8 6,176,564.2 152.7 55.0 3600 82.16 <	WZ	PMS21	638,312.0	6,176,821.0	147.2	- 90.0	360.0	14.75	40	40
WZ PM525 633329 6,176,788.2 143.9 - 55.0 360.0 67.11 191.05 WZ PM525 633,827.4 6,176,701.6 149.3 - 55.0 360.0 32.94 146.2 146.2 WZ PM526 637,827.1 6,176,754.4 156.2 - 55.0 360.0 34.9 79.06 100 WZ PM526 637,874.8 6,176,659.2 157.7 55.0 360.0 51.31 177.07 799 WZ PM530 635,887.4 6,176,607.1 144.7 - 55.0 360.0 51.31 177.07 132.8 WZ PM531 637,073.6 6,176,616.1 149.1 - 55.0 360.0 32.11 124.34 129 WZ PM534 637,073.6 6,176,616.1 149.3 - 55.0 360.0 32.11 124.34 129 WZ PM536 637,073.6 6,176,616.1 149.6 - 55.0	WZ	PMS22	638,333.2	6,176,791.2	146.7	- 55.0	360.0	17.58	145.22	149.8
WZ PM525 633,227.4 6,176,855.3 147.1 - 55.0 3600 31.01 95.72 99 WZ PM526 637,825.7 6,176,755.4 156.2 - 55.0 3600 38.19 79.06 100 WZ PM526 637,825.7 6,176,755.4 156.2 - 55.0 3600 38.19 79.06 100 WZ PM526 637,825.7 6,176,656.6 150.5 55.0 3600 114.6 119.22 130 WZ PM531 637,571.9 6,176,610.4 148.1 55.0 3600 32.11 124.34 129 WZ PM531 637,073.6 6,176,610.4 148.1 55.0 3600 32.11 124.34 129 WZ PM533 637,073.6 6,176,610.4 148.1 55.0 3600 32.11 124.34 129 131.0 117 WZ PM536 63,072.5 6,176,616.1 196.1 150.0 3600	WZ	PMS23	638,319.9	6,176,738.2	143.9	- 55.0	360.0	67.11	191.05	191.05
WZ PM526 637,827.1 6,176,755.4 156.2 55.0 360.0 32.94 146.2 146.2 WZ PM526 637,815.5 6,176,555.4 155.0 360.0 38.19 79.08 100 WZ PM526 637,574.8 6,176,655.2 145.7 - 55.0 360.0 54.32 184.85 191.1 WZ PM536 635,887.4 6,176,656.6 150.5 - 55.0 360.0 51.31 177.07 192.8 WZ PM531 637,757.4 6,176,610.1 148.1 - 55.0 360.0 27.3 112.07 117 WZ PM532 637,073.6 6,176,610.1 149.3 - 55.0 360.0 27.3 112.07 117 WZ PM532 637,073.6 6,176,610.1 149.3 - 55.0 360.0 27.3 112.07 117 WZ PM536 635,071.6 6,176,642.1 144.1 - 55.0 360.0 21.16 142.8 12.8	WZ	PMS25	638,327.4	6,176,835.3	147.1	- 55.0	360.0	31.01	95.72	99
WZ PM527 637,825 6,176,656,9 145,7 55,0 3600 34.19 79,08 100 WZ PM529 637,574,8 6,176,656,6 150,5 55,0 3600 54.32 184.85 1911 WZ PM539 637,574,8 6,176,656,6 150,5 55,0 3600 1146 119,22 130 WZ PM530 637,571,9 6,176,607,1 144,7 55,0 3600 321,3 177,07 171 WZ PM531 637,073,8 6,176,610,4 148,1 55,0 3600 321,1 124,34 139 WZ PM534 637,072,5 6,176,516,1 194,9 5,0 3600 34,8 78,8 84 WZ PM535 63,707,25 6,176,513,2 148,1 5,0 3600 34,8 78,8 84 WZ PM536 63,627,2 6,176,537,2 148,0 5,0 3600 141,0 79,78 137,6 137,8	WZ	PMS26	637.827.1	6.176.701.6	149.3	- 55.0	360.0	32.94	146.2	146.2
WZ PMS28 637,815.5 6,176,656.6 150.5 55.0 360.0 51.43 194.15 WZ PMS3 636,887.4 6,176,566.6 150.5 55.0 360.0 31.46 119.22 130 WZ PMS3 637,572.4 6,176,566.7 158.8 - 90.0 360.0 17.11 79 79 WZ PMS3 637,572.4 6,176,610.4 148.1 - 55.0 360.0 32.11 124.44 1139 WZ PMS34 637,072.8 6,176,616.1 159.6 - 55.0 360.0 32.11 124.44 1139 WZ PMS36 637,072.8 6,176,616.1 159.6 - 55.0 360.0 34.8 78.9 84 WZ PMS36 636,572.6 6,176,482.1 146.4 - 55.0 360.0 14.01 97.98 107.8 WZ PMS38 636,672.6 157,67.97 140.5 - 55.0 360.0 14.14 66.6 67 WZ	WZ	PMS27	637.825.7	6.176.755.4	156.2	- 55.0	360.0	38.19	79.08	100
WZ PMS29 637,574.8 6,176,656.6 150.5 55.0 360.0 31.46 119.22 130 WZ PMS30 637,574.8 6,176,607.1 144.7 - 55.0 360.0 17.11 79 79 WZ PMS30 637,572.4 6,176,607.1 146.3 - 55.0 360.0 35.83 177.07 182.8 WZ PMS31 637,572.4 6,176,604.2 148.1 - 55.0 360.0 32.11 124.34 129 WZ PMS38 637.078.6 6,176,546.2 152.7 - 55.0 360.0 31.46 78.9 84 WZ PMS35 636,571.6 6,176,448.2 145.1 55.0 360.0 14.010 77.8 117.8 WZ PMS38 636,572.8 6,176,607.9 140.2 - 55.0 360.0 14.78 152.8 WZ PMS48 637,071.8 6,176,667.9 144.2 - 55.0 360.0	WZ	PMS28	637,816,5	6,176,659,2	145.7	- 55.0	360.0	54.32	184.85	191.1
WZ PM33 636887.4 6.176,586.7 158.8 90.0 360.0 17.11 79 79 WZ PM530 637,57.4 6.176,607.1 144.7 - 55.0 360.0 51.33 177.07 182.8 WZ PM531 637,57.19 6.176,610.4 148.1 - 55.0 360.0 36.84 51.6 61.6 117 WZ PM533 637,073.6 6.176,516.1 149.3 - 55.0 360.0 32.11 124.44 142 WZ PM535 637,072.5 6.176,516.1 149.3 - 55.0 360.0 81.59 163.6 168 WZ PM535 636,572.6 6.176,513.2 144.1 - 55.0 360.0 120.55 136.26 146.8 WZ PM538 636,672.6 6.176,673.9 144.2 - 55.0 360.0 74.79 187.6 133 WZ PM541 637,673.0 6.176,552.9 144.7	WZ	PMS29	637,574,8	6.176.656.6	150.5	- 55.0	360.0	31.46	119.22	130
WZ PM330 637,572.4 6,176,607.1 144.7 - 55.0 360.0 51.33 177.07 182.8 WZ PM831 637,571.9 6,176,607.1 144.1 - 55.0 360.0 36.44 51.88 61.3 WZ PM832 637,073.6 6,176,610.4 148.1 - 55.0 360.0 32.1 124.34 129 WZ PM835 637,073.8 6,176,516.1 149.3 - 55.0 360.0 34.8 78.9 84 WZ PM835 635,72.6 6,176,488.2 145.1 - 55.0 360.0 120.55 135.26 146.8 WZ PM838 636,572.8 6,176,537.2 145.9 - 55.0 360.0 14.14 66.76 67 WZ PM844 637,573.0 6,176,587.2 144.2 - 55.0 360.0 14.14 66.76 67 WZ PM844 638,074.5 6,176,687.9 144.2.0	W7	PMS3	636 887 4	6 176 586 7	158.8	- 90.0	360.0	1711	79	79
WZ PMS31 637,571.9 6,176,706.7 156.3 - 55.0 360.0 27.3 112.07 111 WZ PMS32 637,073.6 6,176,610.4 148.1 - 55.0 360.0 37.3 112.07 111 WZ PMS33 637,073.8 6,176,516.1 159.6 - 55.0 360.0 33.8 78.9 84 WZ PMS36 637,073.5 6,176,548.3 146.4 - 55.0 360.0 81.59 163.6 168 WZ PMS36 636,572.0 6,176,548.3 146.4 - 55.0 360.0 20.05 136.26 146.8 WZ PMS36 636,572.8 6,176,572.9 148.0 - 55.0 360.0 92.09 147.82 152.8 WZ PMS41 637,320.0 6,176,575.9 144.7 - 55.0 360.0 10.91 28.92 24 WZ PMS41 637,320.0 6,176,575.9 144.7 - 55.0 360.0 110.31 28.92 24.14 <	WZ	PMS30	637 572 4	6 176 607 1	144.7	- 55.0	360.0	51.33	177.07	182.8
WZ PMS32 637,0321 6176,610.4 148.1 - 55.0 360.0 227.3 112.07 117 WZ PMS34 637,073.6 6,176,660.1 159.6 - 55.0 360.0 321.1 124.34 129 WZ PMS34 637,073.8 6,176,648.2 159.6 - 55.0 360.0 34.8 78.9 84 WZ PMS36 636,572.0 6,176,448.2 145.1 - 55.0 360.0 410.1 97.88 107.8 WZ PMS36 636,572.8 6,176,647.9 145.1 - 55.0 360.0 120.55 135.26 146.8 WZ PMS49 636,821.9 6,176,675.9 144.2 - 55.0 360.0 141.4 66.76 67 WZ PMS42 637,073.0 6,176,667.9 144.2 - 55.0 360.0 135.95 207.95 210 WZ PMS43 637,071.8 6,176,667.9 144.2	WZ	PMS31	637 571 9	6 176 706 7	156.3	- 55.0	360.0	36.84	51.68	613
WZ PMS33 637,073.6 6,176,564.2 152.7 55.0 360.0 32.11 124.34 129 WZ PMS34 637,073.8 6,176,566.1 199.1 55.0 360.0 34.8 78.9 84 WZ PMS35 633,073.6 6,176,546.1 199.3 55.0 360.0 81.59 163.6 188 WZ PMS36 636,572.8 6,176,548.2 148.1 - 55.0 360.0 21.05 138.26 1468 WZ PMS38 636,87.7 6,176,552.9 144.0 - 55.0 360.0 14.14 66.76 67.7 WZ PMS41 637,073.0 6,176,552.9 144.7 - 55.0 360.0 14.14 66.76 67.7 WZ PMS41 638,074.5 6,176,693.9 1442.1 - 55.0 360.0 135.95 207.55 210 WZ PMS43 638,074.5 6,176,693.9 144.2 - 55.0 360.0 128.15 262.14 262.5	WZ	DMS32	637,324.0	6 176 610 4	1/18 1	- 55.0	360.0	27.3	112.07	117
WZ PMS34 637,073.8 6,176,616.1 199,6 3500 34.18 174.37 142.37 WZ PMS35 637,073.8 6,176,616.1 199,8 55.0 360.0 34.8 178.9 84 WZ PMS35 637,073.8 6,176,618.1 149.3 - 55.0 360.0 14.01 79.98 107.8 WZ PMS36 636,571.6 6,176,448.2 145.1 - 55.0 360.0 120.55 136.26 146.8 WZ PMS38 636,572.8 6,176,573.2 148.0 - 55.0 360.0 120.95 136.26 146.8 WZ PMS48 637,53.0 6,176,552.9 144.7 - 55.0 360.0 147.9 187.6 193 WZ PMS44 638,074.5 6,176,687.9 144.2 - 55.0 360.0 110.19 28.92 224.18 211.4 WZ PMS44 638,074.5 6,176,689.3 140.7 - 55.0 360.0 129.86 2121.86 2124.18 </td <td>WZ</td> <td>PIVIS32</td> <td>637,524.0</td> <td>6 176 564 2</td> <td>152.7</td> <td>- 55.0</td> <td>360.0</td> <td>27.5</td> <td>124.34</td> <td>117</td>	WZ	PIVIS32	637,524.0	6 176 564 2	152.7	- 55.0	360.0	27.5	124.34	117
WZ PMS35 637,072.5 6,176,516.1 193.5 350.0 81.59 163.6 168.6 WZ PMS35 636,572.0 6,176,448.2 144.1 - 55.0 360.0 1120,55 136.26 146.8 WZ PMS37 636,571.6 6,176,448.2 145.1 - 55.0 360.0 365.8 65.66 67.1 WZ PMS38 636,572.8 6,176,474.6 145.9 - 55.0 360.0 365.8 65.66 67.1 WZ PMS41 637,320.0 6,176,552.9 144.7 - 55.0 360.0 141.4 66.76 67 WZ PMS42 637,073.0 6,176,657.9 144.2 - 55.0 360.0 110.91 228.92 234 WZ PMS44 638,074.5 6,176,667.9 144.2 - 55.0 360.0 199.76 224.18 231.4 WZ PMS46 638,267.7 6,176,689.4 148.3 - 55.0 360.0 128.15 262.14 262.14 262.14<	WZ	PIVIS33	637,073.8	6 176 616 1	150.6	- 55.0	360.0	34.8	78.9	84
WZ PMS36 636,572.0 6,176,498.3 146.4 55.0 360.0 11.01 97.98 107.8 WZ PMS36 636,572.0 6,176,498.2 146.4 145.0 360.0 12.015 138.26 146.8 WZ PMS38 636,572.8 6,176,537.2 148.0 55.0 360.0 92.05 147.82 152.8 WZ PMS48 636,821.9 6,176,574.4 145.9 55.0 360.0 92.05 147.82 152.8 WZ PMS44 636,873.7 6,176,554.0 142.0 55.0 360.0 110.91 228.92 234 WZ PMS44 637,071.8 6,176,654.0 142.0 55.0 360.0 110.91 228.92 234 WZ PMS44 638,027.7 6,176,693.9 144.2 55.0 360.0 128.15 262.14 224.18 224.18 224.18 224.18 224.18 224.18 224.18 224.18 224.18 224.18 262.14 262.14 <td>WZ</td> <td>DMS35</td> <td>637,073.5</td> <td>6 176 516 1</td> <td>1/0 3</td> <td>- 55.0</td> <td>360.0</td> <td>81 50</td> <td>163.6</td> <td>169</td>	WZ	DMS35	637,073.5	6 176 516 1	1/0 3	- 55.0	360.0	81 50	163.6	169
WZ PMS30 636,571.6 6,176,448.2 145.1 55.0 360.0 120.55 136.26 146.8 WZ PMS38 636,571.6 6,176,448.2 145.1 55.0 360.0 92.09 147.82 152.8 WZ PMS49 636,821.9 6,176,474.6 145.9 - 55.0 360.0 92.09 147.82 152.8 WZ PMS41 637,573.0 6,176,552.9 144.7 - 55.0 360.0 11.01.91 228.92 234 WZ PMS43 637,573.0 6,176,654.0 144.2 - 55.0 360.0 110.91 228.92 234 WZ PMS44 638,074.5 6,176,667.9 144.2 - 55.0 360.0 110.91 228.92 234 WZ PMS46 638,267.7 6,176,693.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PMS46 638,262.3 6,176,788.6 150.9 - 90.0 360.0 16.45 40.24 79 <td>WZ</td> <td>PIVIDOD</td> <td>626 572.0</td> <td>6 176 409 2</td> <td>149.0</td> <td>- 55.0</td> <td>360.0</td> <td>41.01</td> <td>103.0</td> <td>107.9</td>	WZ	PIVIDOD	626 572.0	6 176 409 2	149.0	- 55.0	360.0	41.01	103.0	107.9
WZ PMS38 636,571.6 6,176,537.2 148.0 55.0 360.0 36.58 65.06 67.1 WZ PMS38 636,572.8 6,176,637.2 148.0 55.0 360.0 92.09 147.82 152.8 WZ PMS41 637,320.0 6,176,607.9 160.5 90.0 360.0 14.14 66.76 67 WZ PMS41 637,320.0 6,176,554.0 142.0 55.0 360.0 110.91 228.92 234 WZ PMS44 638,074.5 6,176,661.1 144.6 55.0 360.0 110.91 228.92 234 WZ PMS46 638,074.5 6,176,671.1 144.2 55.0 360.0 128.15 221.8 219.86 WZ PMS46 638,267.7 6,176,633.9 144.07 55.0 360.0 128.15 262.14 262.5 WZ PMS56 638,263.7 6,176,784.6 150.8 90.0 360.0 128.15 20.14 79.0	VVZ	PIVISO	636,572.0	6,176,498.3	140.4	- 55.0	360.0	41.01	97.96	107.8
WZ PMS39 638,972.8 6,176,337.4 148.0 - 35.00 960.0 96.1 97.1 WZ PMS39 638,821.9 6,176,637.4 145.9 55.0 360.0 92.0 147.8 152.8 WZ PMS41 637,73.0 6,176,552.9 144.7 - 55.0 360.0 74.79 187.6 193 WZ PMS42 637,573.0 6,176,552.9 144.7 - 55.0 360.0 135.95 207.55 210 WZ PM643 637,073.0 6,176,667.9 144.2 - 55.0 360.0 135.95 207.55 210 WZ PM446 638,267.7 6,176,626.4 140.9 - 55.0 360.0 128.15 262.14 262.5 WZ PMS46 638,178.3 6,176,788.4 150.8 - 90.0 360.0 128.15 262.14 262.5 WZ PMS6 638,166.1 6,176,788.6 150.9 90.0 360.0	VVZ	PIVIS57	030,571.0	6,176,448.2	145.1	- 55.0	360.0	120.55	150.20	140.8
WZ PMS49 653,821.9 6,176,679.9 160.5 90.0 360.0 141.4 66.76 67 WZ PMS41 636,873.7 6,176,552.9 144.7 - 55.0 360.0 74.79 187.6 193 WZ PMS42 637,73.0 6,176,552.9 144.7 - 55.0 360.0 110.91 228.92 234 WZ PMS44 638,074.5 6,176,667.9 144.2 - 55.0 360.0 199.76 224.18 231.4 WZ PMS45 638,267.7 6,176,693.9 140.7 - 55.0 360.0 128.15 221.4 262.5 WZ PMS46 638,267.7 6,176,693.9 140.7 - 55.0 360.0 128.15 221.4 262.5 WZ PMS45 636,862.3 6,176,774.4 150.1 -90.0 360.0 16.36 27 27 WZ PMS8 638,173.3 6,176,788.3 152.4 - 55.0	WZ	PIVIS38	636,572.8	6,1/6,537.2	148.0	- 55.0	360.0	36.58	65.06	67.1
WZ PMS41 637,82.0 61.76,552.9 144.7 55.0 360.0 14.14 66.76 67.7 WZ PMS42 637,573.0 6,176,552.9 144.7 55.0 360.0 110.91 228.92 234 WZ PMS43 637,071.8 6,176,667.9 144.2 - 55.0 360.0 135.95 207.55 210 WZ PMS44 638,074.5 6,176,667.9 144.2 - 55.0 360.0 197.6 224.18 231.4 WZ PMS46 638,267.7 6,176,626.4 160.9 90.0 360.0 16.45 40.24 79 WZ PMS5 636,862.3 6,176,774.4 150.1 90.0 360.0 16.36 27 27 WZ PMS9 638,173.3 6,176,774.4 150.1 90.0 360.0 16.36 27 27 WZ PMS9 638,187.3 6,176,787.5 160.3 60.5 336.1 831.1 60.5 150.9 </td <td>WZ</td> <td>PIMS39</td> <td>636,821.9</td> <td>6,1/6,4/4.6</td> <td>145.9</td> <td>- 55.0</td> <td>360.0</td> <td>92.09</td> <td>147.82</td> <td>152.8</td>	WZ	PIMS39	636,821.9	6,1/6,4/4.6	145.9	- 55.0	360.0	92.09	147.82	152.8
WZ PM541 65/3/201 6,176,552.9 144.7 - 55.0 360.0 74.79 187.6 193 WZ PM543 637,071.8 6,176,654.0 142.0 - 55.0 360.0 110.91 228.92 224 WZ PM543 637,071.8 6,176,667.9 144.2 - 55.0 360.0 99.76 224.18 231.4 WZ PM544 638,252.7 6,176,693.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PM546 638,252.7 6,176,693.9 140.7 - 55.0 360.0 16.45 40.24 79 WZ PM55 638,173.3 6,176,786.6 160.8 - 90.0 360.0 16.35 27 27 WZ PM59 638,17.3 6,176,788.6 150.8 - 50.0 147.7 216.1 300 300 WZ SDD146 638,549.4 6,176,786.1 144.3 </td <td>WZ</td> <td>PIMS4</td> <td>636,873.7</td> <td>6,176,607.9</td> <td>160.5</td> <td>- 90.0</td> <td>360.0</td> <td>14.14</td> <td>66.76</td> <td>6/</td>	WZ	PIMS4	636,873.7	6,176,607.9	160.5	- 90.0	360.0	14.14	66.76	6/
WZ PM542 637,573.0 6,176,554.0 142.0 - 55.0 360.0 11031 228.92 234 WZ PM543 637,071.8 6,176,667.9 144.2 - 55.0 360.0 135.95 207.55 210 WZ PM545 638,267.7 6,176,683.9 144.2 - 55.0 360.0 128.15 262.14 262.55 WZ PM56 638,326.7 6,176,626.4 160.9 - 90.0 360.0 128.15 262.14 262.55 WZ PM56 638,178.3 6,176,788.6 150.8 - 90.0 360.0 12.3 35 WZ PM58 638,178.3 6,176,685.7 160.3 - 60.5 336.1 830.0 300 WZ SDD146 638,739.2 6,176,736.1 144.2 - 59.8 357.2 110.1 244.36 225.5 WZ SDD146 638,648.7 6,176,682.9 141.6 - 60.0	WZ	PMS41	637,320.0	6,176,552.9	144.7	- 55.0	360.0	74.79	187.6	193
WZ PMS43 637,071.8 6,176,461.1 146.8 - 55.0 360.0 135.95 207.55 210 WZ PMS44 638,074.5 6,176,683.4 144.2 - 55.0 360.0 99.76 224.18 231.4 WZ PMS45 638,267.7 6,176,683.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PMS5 638,662.3 6,176,678.4 160.9 -90.0 360.0 128.15 262.14 262.5 WZ PMS8 638,166.1 6,176,774.4 150.1 -90.0 360.0 16.36 27 27 WZ PMS8 638,166.1 6,176,788.6 150.8 - 90.0 360.0 16.35 10.0 300 300 WZ SDD144 638,739.2 6,176,788.6 150.8 - 59.1 355.7 100.1 244.36 255.5 WZ SDD146 638,481.9 6,176,736.1 144.3 -<	WZ	PMS42	637,573.0	6,176,554.0	142.0	- 55.0	360.0	110.91	228.92	234
WZ PM644 638,074.5 6,176,667.9 144.2 55.0 360.0 99.76 224.18 2219.86 WZ PM545 638,267.7 6,176,693.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PM55 636,862.3 6,176,626.4 160.9 - 90.0 360.0 16.45 40.24 79 WZ PM55 638,866.1 6,176,774.4 150.1 - 90.0 360.0 16.35 40.24 79 WZ PM58 638,166.1 6,176,788.6 150.8 - 90.0 360.0 16.36 27 27 WZ PM59 638,117.3 6,176,635.7 160.3 - 60.5 336.1 831.0 60.5 150.9 WZ SDD144 638,739.2 6,176,740.5 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD146 638,486.7 6,176,636.1 144.2 -	WZ	PMS43	637,071.8	6,176,461.1	146.8	- 55.0	360.0	135.95	207.55	210
WZ PMS45 638,267.7 6,176,639.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PMS5 636,862.3 6,176,693.9 140.7 - 55.0 360.0 128.15 262.14 262.5 WZ PMS5 636,862.3 6,176,672.4 150.1 - 90.0 360.0 128.15 262.14 262.5 WZ PMS8 638,178.3 6,176,774.4 150.1 - 90.0 360.0 16.36 27 27 WZ PMS9 638,117.3 6,176,678.3 152.4 - 55.0 147.7 21.61 300 300 WZ SDD144 638,739.2 6,176,785.6 139.0 - 59.1 353.7 363.1 457.66 480.9 WZ SDD146 638,480.7 6,176,682.9 144.3 - 59.2 356.0 117.59 255.91 265.7 WZ SDD146 638,480.7 6,176,608.8 141.3 <td>WZ</td> <td>PMS44</td> <td>638,074.5</td> <td>6,176,667.9</td> <td>144.2</td> <td>- 55.0</td> <td>360.0</td> <td>99.76</td> <td>224.18</td> <td>231.4</td>	WZ	PMS44	638,074.5	6,176,667.9	144.2	- 55.0	360.0	99.76	224.18	231.4
WZ PMS46 638,326.7 6,176,693.9 140.7 - 55.0 360.0 128.15 262.14 262.57 WZ PMS5 636,862.3 6,176,626.4 160.9 - 90.0 360.0 16.45 40.24 79 WZ PMS7 638,178.3 6,176,774.4 150.1 - 90.0 360.0 16.36 27 27 WZ PMS9 638,117.3 6,176,788.6 150.8 - 90.0 360.0 16.36 27 27 WZ PMS9 638,117.3 6,176,788.6 150.8 - 50.0 147.7 21.61 300 300 WZ SDD146 638,793.2 6,176,786.1 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD146 638,486.7 6,176,786.1 144.2 - 59.8 357.2 110.1 244.36 255.5 WZ SDD148 638,681.3 6,176,606.8 141.3 <	WZ	PMS45	638,267.7	6,176,839.4	148.3	- 55.0	240.0	30	219.86	219.86
WZ PMS5 636,862.3 6,176,626.4 160.9 90.0 360.0 16.45 40.24 79 WZ PMS7 638,178.3 6,176,774.4 150.1 90.0 360.0 20 35 35 WZ PMS8 638,117.3 6,176,788.6 150.8 90.0 360.0 16.36 27 27 WZ PMS9 638,117.3 6,176,788.6 150.8 90.0 360.0 16.36 27 27 WZ SDD144 638,79.2 6,176,685.7 160.3 60.5 336.1 83.1 60.5 150.9 WZ SDD146 638,79.2 6,176,736.1 144.3 59.2 356.0 117.59 256.91 265.7 WZ SDD148 638,486.7 6,176,628.9 141.6 60.0 353.0 176.1 303.66 318.3 WZ SDD148 638,481.9 6,176,629.8 141.3 59.7 355.6 126.01 253.33 262.1 WZ <td>WZ</td> <td>PMS46</td> <td>638,326.7</td> <td>6,176,693.9</td> <td>140.7</td> <td>- 55.0</td> <td>360.0</td> <td>128.15</td> <td>262.14</td> <td>262.5</td>	WZ	PMS46	638,326.7	6,176,693.9	140.7	- 55.0	360.0	128.15	262.14	262.5
WZ PMS7 638,178.3 6,176,774.4 150.1 90.0 360.0 20 35 35 WZ PMS8 638,166.1 6,176,788.6 150.8 90.0 360.0 16.36 27 27 WZ PMS9 638,117.3 6,176,788.6 152.4 - 55.0 147.7 21.61 300 300 WZ SDD144 638,739.2 6,176,635.7 160.3 - 60.5 336.1 8.31 60.5 148.9 WZ SDD144 638,739.2 6,176,736.1 144.2 - 59.8 357.2 110.1 244.36 255.5 WZ SDD148 638,486.7 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD149 637,860.9 6,176,662.9 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD150 636,995.8 6,176,662.1 138.6 - 59.8 354.2 254.31 357.74 462.8 <t< td=""><td>WZ</td><td>PMS5</td><td>636,862.3</td><td>6,176,626.4</td><td>160.9</td><td>- 90.0</td><td>360.0</td><td>16.45</td><td>40.24</td><td>79</td></t<>	WZ	PMS5	636,862.3	6,176,626.4	160.9	- 90.0	360.0	16.45	40.24	79
WZ PMS8 638,166.1 6,176,788.6 150.8 90.0 360.0 163.6 27 27 WZ PMS9 638,117.3 6,176,788.3 152.4 -55.0 147.7 21.61 300 300 WZ SDD122 637,077.4 6,176,685.7 160.3 -60.5 336.1 8.31 60.5 150.9 WZ SDD144 638,739.2 6,176,736.1 144.3 -59.2 356.0 117.59 256.91 265.7 WZ SDD146 638,480.7 6,176,682.9 141.6 -60.0 353.0 176.1 303.66 318.3 WZ SDD149 637,660.9 6,176,608.8 141.3 -59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,695.8 6,176,629.8 139.7 -60.6 354.9 281.48 400.29 417 WZ SDD151 638,631.3 6,176,579.6 138.1 -60.0 353.3 233.33 347.21 351.7 <td>WZ</td> <td>PMS7</td> <td>638,178.3</td> <td>6,176,774.4</td> <td>150.1</td> <td>- 90.0</td> <td>360.0</td> <td>20</td> <td>35</td> <td>35</td>	WZ	PMS7	638,178.3	6,176,774.4	150.1	- 90.0	360.0	20	35	35
WZ PMS9 638,117.3 6,176,878.3 152.4 - 55.0 147.7 21.61 300 300 WZ SDD122 637,077.4 6,176,587.6 139.0 - 59.1 335.7 363.1 457.66 480.9 WZ SDD146 638,739.2 6,176,736.1 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD148 638,480.7 6,176,682.9 141.6 - 60.0 353.0 176.1 303.66 318.3 WZ SDD149 637,860.9 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,958.8 6,176,602.8 139.7 60.6 354.9 281.48 400.29 417 WZ SDD150 638,631.3 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD152 638,645.0 6,176,735.8 143.6	WZ	PMS8	638,166.1	6,176,788.6	150.8	- 90.0	360.0	16.36	27	27
WZ SDD122 637,077.4 6,176,635.7 160.3 - 60.5 336.1 8.31 60.5 150.9 WZ SDD144 638,739.2 6,176,589.6 139.0 - 59.1 353.7 363.1 457.66 480.9 WZ SDD146 638,549.4 6,176,740.5 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD148 638,486.7 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,995.8 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,995.8 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD151 638,631.3 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,649.0 6,176,566.2	WZ	PMS9	638,117.3	6,176,878.3	152.4	- 55.0	147.7	21.61	300	300
WZ SDD144 638,739.2 6,176,589.6 139.0 - 59.1 353.7 363.1 457.66 480.9 WZ SDD146 638,549.4 6,176,740.5 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD147 638,481.9 6,176,736.1 144.2 - 59.8 357.2 110.1 244.36 255.5 WZ SDD149 637,860.9 6,176,608.1 411.3 - 59.7 355.6 12601 253.33 262.1 WZ SDD150 636,995.8 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,613.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,613.3 6,176,529.1 137.5 59.8 354.2 254.31 357.74 462.8 WZ SDD154 638,639.3 6,176,579.6 138.1	WZ	SDD122	637,077.4	6,176,635.7	160.3	- 60.5	336.1	8.31	60.5	150.9
WZ SDD146 638,549.4 6,176,740.5 144.3 - 59.2 356.0 117.59 256.91 265.7 WZ SDD147 638,481.9 6,176,736.1 144.2 - 59.8 357.2 110.1 244.36 255.5 WZ SDD148 638,486.7 6,176,682.9 141.6 - 60.0 353.0 176.1 303.66 318.3 WZ SDD149 637,860.9 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,995.8 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,112.9 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,489.4 6,176,579.6 138.1 - 60.0 353.3 233.33 347.21 351.7 WZ SDD155 638,645.0 6,176,579.6	WZ	SDD144	638,739.2	6,176,589.6	139.0	- 59.1	353.7	363.1	457.66	480.9
WZ SDD147 638,481.9 6,176,736.1 144.2 - 59.8 357.2 110.1 244.36 255.5 WZ SDD148 638,486.7 6,176,682.9 141.6 - 60.0 353.0 176.1 303.66 318.3 WZ SDD149 637,860.9 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,995.8 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,611.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,412.9 6,176,629.8 138.7 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD157 638,326.8 6,176,579.6	WZ	SDD146	638,549.4	6,176,740.5	144.3	- 59.2	356.0	117.59	256.91	265.7
WZ SDD148 638,486.7 6,176,682.9 141.6 - 60.0 353.0 176.1 303.66 318.3 WZ SDD149 637,860.9 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,955.8 6,176,491.1 148.3 - 60.1 356.2 101.11 170.64 185.8 WZ SDD151 638,631.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,112.9 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,489.4 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD159 637,976.5 6,176,765.4	WZ	SDD147	638,481.9	6,176,736.1	144.2	- 59.8	357.2	110.1	244.36	255.5
WZ SDD149 637,860.9 6,176,606.8 141.3 - 59.7 355.6 126.01 253.33 262.1 WZ SDD150 636,995.8 6,176,491.1 148.3 - 60.1 356.2 101.11 170.64 185.8 WZ SDD151 638,631.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,112.9 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,768.4	WZ	SDD148	638,486.7	6,176,682.9	141.6	- 60.0	353.0	176.1	303.66	318.3
WZ SDD150 636,995.8 6,176,491.1 148.3 - 60.1 356.2 101.11 170.64 185.8 WZ SDD151 638,631.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,112.9 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,489.4 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,759.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,650.4	WZ	SDD149	637,860.9	6,176,606.8	141.3	- 59.7	355.6	126.01	253.33	262.1
WZ SDD151 638,631.3 6,176,629.8 139.7 - 60.6 354.9 281.48 400.29 417 WZ SDD152 638,112.9 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,489.4 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD160 637,827.2 6,176,505.5	WZ	SDD150	636,995.8	6,176,491.1	148.3	- 60.1	356.2	101.11	170.64	185.8
WZ SDD152 638,112.9 6,176,566.2 138.6 - 59.8 354.2 254.31 357.74 462.8 WZ SDD153 638,489.4 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,529.1 137.5 - 59.4 353.1 446.1 510.05 513.7 WZ SDD157 638,326.8 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD160 637,827.2 6,176,505.5	WZ	SDD151	638,631.3	6,176,629.8	139.7	- 60.6	354.9	281.48	400.29	417
WZ SDD153 638,489.4 6,176,634.0 140.0 - 60.0 353.3 233.33 347.21 351.7 WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,529.1 137.5 - 59.4 353.1 446.1 510.05 513.7 WZ SDD157 638,326.8 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,684.6 146.3 - 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD160 637,496.3 6,176,505.5	WZ	SDD152	638,112.9	6,176,566.2	138.6	- 59.8	354.2	254.31	357.74	462.8
WZ SDD154 638,639.3 6,176,579.6 138.1 - 60.0 353.0 320.56 426.29 432.3 WZ SDD155 638,645.0 6,176,529.1 137.5 - 59.4 353.1 446.1 510.05 513.7 WZ SDD157 638,326.8 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,684.6 146.3 - 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD161 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9	WZ	SDD153	638,489.4	6,176,634.0	140.0	- 60.0	353.3	233.33	347.21	351.7
WZ SDD155 638,645.0 6,176,529.1 137.5 - 59.4 353.1 446.1 510.05 513.7 WZ SDD157 638,326.8 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,684.6 146.3 - 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD161 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,529.3	WZ	SDD154	638,639.3	6,176,579.6	138.1	- 60.0	353.0	320.56	426.29	432.3
WZ SDD157 638,326.8 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,735.8 143.6 - 59.1 356.1 76.4 214.95 221.3 WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,650.4 146.3 - 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD161 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 50.37 189.63 201.8 WZ SDD162 638,096.6 6,176,708.9	WZ	SDD155	638,645.0	6,176,529.1	137.5	- 59.4	353.1	446.1	510.05	513.7
WZ SDD158 638,089.7 6,176,766.4 153.5 - 60.0 353.0 5.4 122.85 137.3 WZ SDD159 637,976.5 6,176,684.6 146.3 - 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD160 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3	WZ	SDD157	638,326.8	6,176,735.8	143.6	- 59.1	356.1	76.4	214.95	221.3
WZ SDD159 637,976.5 6,176,684.6 146.3 59.8 355.2 62.67 194.46 203.4 WZ SDD160 637,827.2 6,176,650.4 144.7 59.7 354.7 64.08 198.55 212.1 WZ SDD161 637,496.3 6,176,505.5 140.8 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 58.3 351.2 60.37 189.63 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 58.3 351.2 60.37 189.63 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3 151.9 60.7 353.2 40.99 130.56 144.4 <td>WZ</td> <td>SDD158</td> <td>638,089.7</td> <td>6,176,766.4</td> <td>153.5</td> <td>- 60.0</td> <td>353.0</td> <td>5.4</td> <td>122.85</td> <td>137.3</td>	WZ	SDD158	638,089.7	6,176,766.4	153.5	- 60.0	353.0	5.4	122.85	137.3
WZ SDD160 637,827.2 6,176,650.4 144.7 - 59.7 354.7 64.08 198.55 212.1 WZ SDD161 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3 151.9 - 60.7 353.2 40.99 130.56 144.4 WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0	WZ	SDD159	637,976.5	6,176,684.6	146.3	- 59.8	355.2	62.67	194.46	203.4
WZ SDD161 637,496.3 6,176,505.5 140.8 - 59.4 353.1 158.31 256.07 258.7 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3 151.9 - 60.7 353.2 40.99 130.56 144.4 WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8	WZ	SDD160	637.827.2	6,176.650.4	144.7	- 59,7	354.7	64.08	198.55	212.1
WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 57.53 59.57 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3 151.9 - 60.7 353.2 40.99 130.56 144.4 WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6.176,783.4	WZ	SDD161	637,496,3	6,176,505,5	140.8	- 59.4	353.1	158.31	256.07	258.7
WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD162 638,096.6 6,176,708.9 147.3 - 58.3 351.2 60.37 189.63 201.8 WZ SDD167 637,075.7 6,176,559.3 151.9 - 60.7 353.2 40.99 130.56 144.4 WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6.176,783.4 145.6 - 60.5 358.1 54.82 200.48 234.5	WZ	SDD162	638.096.6	6,176,708,9	147.3	- 58.3	351.2	57.53	59.57	201.8
WZ SDD167 637,075.7 6,176,559.3 151.9 - 60.7 353.2 40.99 130.56 144.4 WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6.176,783.4 145.6 - 60.5 358.1 54.82 200.48 234.5	WZ	SDD162	638.096.6	6,176,708 9	147.3	- 58.3	351.2	60.37	189.63	201.8
WZ SDD168 636,865.2 6,176,477.7 146.1 - 61.3 353.5 97.46 154.37 180.3 WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6,176,783.4 145.6 - 60.5 358.1 54.82 200.48 234.51	WZ	SDD167	637.075 7	6,176,559,3	151.9	- 60.7	353.2	40.99	130.56	144.4
WZ SDD169 636,859.6 6,176,528.0 149.9 - 60.0 353.9 34.62 107.53 120.3 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6.176,783.4 145.6 - 60.5 358.1 54.82 200.48 234.5	W7	SDD168	636 865 2	6,176 477 7	146.1	- 61.3	353.5	97.46	154.37	180.3
WZ SDD170 636,572.7 6,176,517.8 147.0 - 59.8 356.1 14.67 80.32 96.4 WZ SDD173 638,475.0 6,176,783.4 145.6 - 60.5 358.1 54.82 200.48 234.5	W7	SDD169	636,859,6	6 176 528 0	149.9	- 60.0	353.0	34.62	107 53	120.3
WZ SDD173 638 475 0 6 176 783 4 145 6 - 60 5 358 1 54 82 200 48 234 5	W7	SDD170	636 572 7	6 176 517 8	147.0	- 59.8	356.1	14.67	80.30	96.4
	W7	SDD170	638 475 0	6 176 783 4	145.6	- 60.5	358.1	54.82	200.48	234.5

_									
Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
WZ	SDD174	638,083.4	6,176,813.8	155.7	- 61.7	348.0	6.15	73.64	120.2
WZ	SDD175	638,492.4	6,176,591.3	139.5	- 60.9	1.4	317.23	423.76	448.1
WZ	SDD176	638,361.9	6,176,578.7	138.6	- 60.0	353.0	295.45	401.97	444.4
WZ	SDD177	637,877.9	6,176,482.6	138.1	- 60.6	354.8	292.04	378.08	414.8
WZ	SDD178	638,470.3	6,176,826.3	146.1	- 60.0	346.7	19.5	150.79	225.5
WZ	SDD179	637,634.1	6,176,437.9	139.0	- 60.1	357.1	279.93	353.65	390.5
WZ	SDD205	636,486.5	6,176,492.7	147.5	- 60.1	349.0	42.52	88.27	155.4
WZ	SDD206	636,480,1	6.176.537.6	149.4	- 60.3	354.0	9.82	49.45	146.2
WZ	SDD207	638.625.0	6.176.675.0	141.8	- 61.8	359.5	219.75	351.7	368.6
WZ	SDD208	638,619,6	6,176,718,2	144.0	- 60.7	352.9	155.94	207.03	328.8
W7	SDD208	638 619 6	6 176 718 2	144.0	- 60.7	352.9	207.19	299.25	328.8
WZ	SDD210	638.613.2	6.176.766.0	146.0	- 60.5	351.9	80.8	145.56	347.2
WZ	SDD211	638 465 6	6 176 869 8	145.2	- 61.0	355.3	24.82	96.8	137.1
WZ	SDD214	636 355 2	6 176 502 6	150.6	- 60.3	352.3	13.46	61.06	72 13
WZ	SDD217	636 737 8	6 176 496 8	145.8	- 60.3	353.2	52.04	110.93	127.16
W7	SDD217	636 847 5	6 176 612 0	150.0	- 61.0	353.0	12.04	37.0	63.34
WZ	SDD218	626 952 6	6 176 569 1	155.5	- 60.5	251.5	15.74	72.02	92.1
WZ	SDD213	638 359 7	6 176 601 1	130.1	- 59.6	351.5	238.79	350.96	408.5
WZ	50022	626.082.2	6 176 587 4	160.1	- 60.3	252.5	238.73	95 71	406.3
WZ	SDD220	627.004.4	6 176 656 7	160.1	- 00.3	252.0	14.8	42.16	50.5
VVZ	500222	637,094.4	6,176,000.7	100.2	- 00.0	352.0	10.5	45.10	31.3
VVZ	SUD225	637,105.5	6,176,593.9	155.4	- 60.6	350.9	27.42	104.06	117.54
VVZ	SDD224	637,157.7	6,176,602.6	151.4	- 59.6	348.6	21.6	106.33	114.53
WZ	SDD227	637,225.0	6,176,648.7	153.4	- 60.2	353.0	16.32	55.5	67.2
VVZ	SDD228	637,236.2	6,176,564.0	146.6	- 60.5	354.5	56.42	157.37	168.7
VV Z	500229	637,257.8	6,176,384.8	141.3	- 60.0	352.5	279.09	308.8	324.14
WZ	SDD23	638,108.5	6,1/6,615.8	140.1	- 60.0	355.2	169.83	287.44	320.4
WZ	SDD230	637,229.1	6,176,605.5	149.6	- 59.3	351.4	32.67	114.35	126.52
WZ	SDD232	637,250.2	6,176,429.2	142.0	- 59.1	352.7	216.92	276.73	288.37
WZ	SDD233	637,292.0	6,176,613.0	148.9	- 60.2	352.0	20.09	20.12	127.97
WZ	SDD233	637,292.0	6,176,613.0	148.9	- 60.2	352.0	26.32	114.25	127.97
WZ	SDD234	637,302.7	6,176,525.2	143.9	- 60.2	352.0	124.83	206.9	225.6
WZ	SDD237	637,358.1	6,176,574.6	145.1	- 60.1	351.8	44.99	166.03	177.2
WZ	SDD238	637,469.3	6,176,688.4	153.8	- 59.1	352.2	18.41	56.49	192.57
WZ	SDD239	637,480.9	6,176,602.3	145.7	- 60.0	352.4	35.53	152.7	165.07
WZ	SDD24	637,874.4	6,176,506.6	138.6	- 60.3	353.0	242.87	342.4	357.2
WZ	SDD240	637,503.1	6,176,426.0	139.0	- 59.9	350.9	279.3	347.45	357.4
WZ	SDD241	637,476.1	6,176,643.7	149.0	- 60.5	352.6	27.6	106.87	120.21
WZ	SDD242	637,491.0	6,176,556.1	142.9	- 60.6	352.2	89.64	202.61	213.06
WZ	SDD243	637,496.5	6,176,464.5	139.9	- 59.6	351.3	213.07	312.22	334.04
WZ	SDD244	637,612.0	6,176,627.9	145.9	- 60.2	352.3	37.56	165	174.22
WZ	SDD245	637,721.4	6,176,750.0	158.2	- 60.2	352.0	13.4	44.43	63.5
WZ	SDD246	637,732.6	6,176,662.3	147.6	- 60.0	352.9	24.92	158.71	170.3
WZ	SDD247	637,753.7	6,176,484.7	138.7	- 60.3	350.4	264.28	348.86	359.22
WZ	SDD248	637,845.6	6,176,727.5	151.9	- 60.0	352.9	24.47	112.24	122.3
WZ	SDD249	637,965.6	6,176,770.4	156.9	- 60.2	352.9	19.71	93.35	104.27
WZ	SDD25	638,354.1	6,176,650.7	139.2	- 62.1	353.0	187.74	309.47	317.2
WZ	SDD250	637,986.2	6,176,596.8	140.1	- 59.8	352.9	169.67	288.6	296.22
WZ	SDD251	637,994.9	6,176,504.6	138.2	- 59.0	352.6	288.57	383.34	390.67
WZ	SDD252	638,112.2	6,176,589.1	139.1	- 60.8	354.0	212.9	331.64	342.55
WZ	SDD253	638,203.6	6,176,828.1	150.4	- 59.7	352.0	8	83.7	231.45
WZ	SDD254	638,215.0	6,176,739.6	145.1	- 60.0	349.8	47.57	181.6	192.4
WZ	SDD255	638,236.4	6,176,561.2	138.0	- 59.7	353.0	279.04	381.36	386.75
WZ	SDD256	638,333.2	6,176,818.4	147.0	- 59.9	350.0	9.93	119.7	132.4
WZ	SDD26	637,624.2	6,176,512.0	139.8	- 60.9	353.7	166.55	273.64	325.6
WZ	SDD27	637,629.7	6,176,462.1	139.1	- 59.3	353.6	230.63	319.3	346.8
WZ	SDD28	637.372.9	6,176,453.0	141.5	- 59.8	353.8	217.8	288.77	322.8
WZ	SDD29	637.378.8	6,176,399.4	139.9	- 60.0	353.0	267.36	326.12	394.8
WZ	SDD310	637.950.5	6,176,649.0	143.6	- 60.4	0.6	97.88	120	120

Zone	HOLEID	EAST	NORTH	RL	DIP	AZIMUTH	FROM	то	HOLE DEPTH
WZ	SDD312	637,949.6	6,176,598.3	140.6	- 59.9	1.3	162.75	174	174
WZ	SDD314	638,150.4	6,176,729.1	146.6	- 70.9	2.4	48.95	70.3	70.3
WZ	SDD315	637,650.4	6,176,525.6	139.8	- 60.5	359.4	167.31	189.4	189.4
WZ	SDD317	637,156.8	6,176,626.8	153.6	- 59.5	1.7	18.2	83.57	141.62
WZ	SDD32	636,870.9	6,176,426.0	144.0	- 60.0	353.0	147.4	193.09	210.6
WZ	SDD320	637,249.6	6,176,650.7	152.8	- 60.0	357.9	18.4	57.22	120.3
WZ	SDD323	637,350.4	6,176,537.4	143.6	- 60.1	1.1	97.69	105.43	105.43
WZ	SDD324	637,750.3	6,176,580.3	141.2	- 60.7	359.5	133.98	141.45	141.45
WZ	SDD328	636,750.1	6,176,579.5	153.1	- 60.6	359.5	7.2	47.7	138.24
WZ	SDD330	636,950.2	6,176,449.8	145.4	- 60.2	358.6	137.91	195.03	258.6
WZ	SDD332	636,750.4	6,176,425.7	143.3	- 60.5	2.3	162.09	167.65	216.08
WZ	SDD333	637,650.6	6,176,563.3	141.2	- 60.4	2.1	121.74	135.5	135.5
WZ	SDD334	637,150.7	6,176,450.6	144.1	- 59.7	2.1	175.05	189.37	189.37
WZ	SDD336	636,851.1	6,176,577.4	156.0	- 60.3	2.5	9.77	66.1	150.4
WZ	SDD337	636,977.1	6,176,618.7	162.4	- 60.4	1.9	24.15	55.87	96.28
WZ	SDD340	638,252.2	6,176,730.5	143.3	- 60.6	358.7	61.97	84.27	84.27
WZ	SDD343	638,048.5	6,176,722.8	150.2	- 59.0	358.6	36.87	170.61	197.51
WZ	SDD346	638,050.0	6,176,624.4	141.1	- 60.1	2.4	148.86	277.8	332.65
WZ	SDD39	636,999.4	6,176,439.3	145.5	- 60.7	352.3	152.02	207.25	279.6
WZ	SDD40	637,245.6	6,176,474.3	143.0	- 60.7	353.6	164.27	236.09	306.1
WZ	SDD41	637,366.8	6,176,499.9	142.5	- 61.0	353.1	160.3	241.76	256.6
WZ	SDD42	637,496.0	6,176,510.1	141.0	- 60.4	353.9	147.64	246.13	255.6
WZ	SDD43	637,743.3	6,176,561.9	140.4	- 59.9	353.4	142.61	252.59	273.5
WZ	SDD44	637,868.4	6,176,554.9	139.4	- 61.3	353.8	182.3	292.4	303.3
WZ	SDD45	638,096.3	6,176,714.5	147.9	- 60.8	350.9	51.85	188.21	209.7
WZ	SDD46	638,227.2	6,176,649.4	139.8	- 60.3	352.5	159.71	290.19	293.1
WZ	SDD62	637,122.2	6,176,421.4	144.6	- 60.2	352.7	201.84	256.66	270.6