ASX ANNOUNCEMENT / MEDIA RELEASE

5 March 2014

CLEVELAND JORC RESOURCES SIGNIFICANTLY EXPANDED

Highlights

- Resource tonnage expanded by 22% to 7.44 million tonnes at 0.73% tin equivalence
- Contained metal increased by 16% to 54,300 tonnes of contained tin equivalent metal
- Indicated Mineral Resource now represents 67% of the total resource
- Significant scope to expand the known resources. Conceptual Exploration Targets being prepared
- New JORC Mineral Resources being incorporated into Pre-Feasibility Study due in first quarter 2014

Elementos Limited (ASX: ELT) ("Elementos" or the "Company") is pleased to report an updated JORC Resource Report for the Cleveland tin-copper and tungsten projects in Tasmania, in accordance with JORC 2012. The Tin and Copper JORC Resource, independently prepared by MiningOne Consultants, is summarised below:

	Cleveland Tin and Copper Mineral Resource Estimate#						
Cut-off Grade % Sn	Category	Tonnes t	Tin grade % Sn	Copper grade % Cu	Tin_Eq Sn_Eq%	Tin tonnes	Tin Equivalent tonnes
0.35%	Indicated	5,002,000	0.69%	0.28%	0.78%	34,500	39,000
0.35%	Inferred	2,442,000	0.56%	0.19%	0.63%	13,900	15,300
	Total	7,444,000	0.65%	0.25%	0.73%	48,400	54,300

*The full resource Estimate is included in Appendix One. Where Sn Equivalent metal values were made for tin copper mineralisation, metal prices current at the time of writing were used, that is, US\$22,560 per tonne for tin and US\$7,155 per tonne for copper.

The Mineral Resources have been estimated and reported in accordance with the guidelines of the Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code 2012).

In preparing the updated mineral resources estimate, the geological model has been refined. The company now believes there is significant potential within the Cleveland underground deposits to expand the known mineralisation to the south-west and northeast (along strike) and at depth, and potentially near surface above the current resource. The company has engaged MiningOne Consultants to evaluate these conceptual exploration targets and provide a report quantifying the potential where possible.

Cleveland Mine Tin-Copper Resource

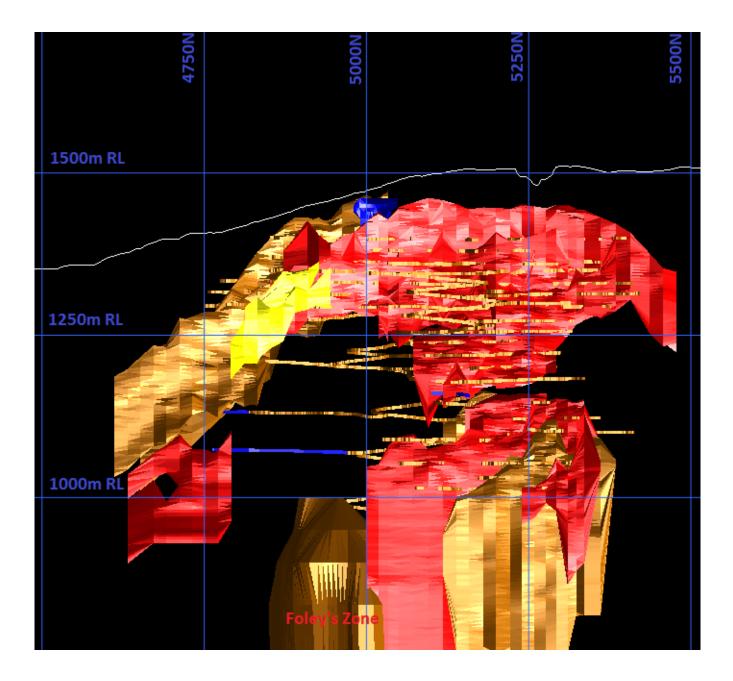
As part of the Pre-Feasibility Study ("PFS"), additional drill data, improved modelling of the underground workings and mined stopes were included in the resource block model. This additional data and further interpretation of the geology has resulted in a significant increase in the Global Resource. The updated Resource Report is a critical input for the PFS due for release in the first quarter, 2014.

The updated JORC Mineral Resource for the Cleveland mine has increased the overall resource tonnage by 1.325Mt or 22% and the tin contained metal by 6,400 tonnes or 15%. The overall tin equivalent grade has fallen by 5% reflecting:

- the exclusion of higher-grade blocks that were depleted for mining by more accurate modelling of the underground development and stopes; and
- the inclusion of lower-grade resource blocks.

The Total Indicated Mineral Resource has increased to 67% or 5.002Mt. On completion of the PFS, some Indicated Mineral Resources may be upgraded to Measured Resource status for inclusion in a Definitive Feasibility Study.

	Current Report	Increase from Previous Report
Total Mineral Resource	7,444,000 tonnes	Increase of 22%
Tin Equivalent Grade	0.723%	Decrease of 5%
Tin Contained	48,200 tonnes	Increase of 15%
Copper Contained	18,600 tonnes	Increase of 21%


The resource has been reported at a cut-off grade of 0.35% tin, which is consistent with the cut-off grade used in reporting the JORC Mineral Resource released in April 2013. The cut-off grade is being re-assessed as part of the PFS due for completion in the first quarter, 2014.

Exploration Potential

There is excellent potential for further exploration of the Cleveland tin-copper mineralisation. The definition and prioritisation of Exploration Targets is continuing, and the results will be reported separately when completed. The main tin-bearing lenses remain open at depth and along strike, and there are tin-copper drilling intersections beyond the limits of the current Mineral Resource. There are also near surface tin and copper targets that will be investigated further.

Figure 1: Longitudinal view of the tin-copper lenses. Except for Foleys' Zone (which is labelled), the wireframes are of tin-copper lenses.

Cleveland Tailings and Tungsten JORC Mineral Resource Estimates

There have been no changes to the JORC Mineral Resources previously reported in accordance with JORC 2004 for the Cleveland tailings and tungsten deposits. A summary of the JORC 2012 Mineral Resource estimates for these deposits are provided in the Appendix One of this report.

For more information, please contact:

Calvin Treacy

Managing Director Phone: +61 7 3221 7770 Email: admin@elementos.com

Elementos is an Australian, ASX-listed, diversified metals company, including Cleveland, an advanced stage tin-copper and tungsten project in Tasmania, together with a number of prospective copper and gold assets in South America and Australia.

Please visit us at <u>www.elementos.com.au</u>

COMPETENT PERSON STATEMENT

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mick McKeown of MiningOne Consultants, a Competent Person who is a Fellow of the Australian Institute of Mining and Metallurgy. Mick McKeown is a full-time employee of Mining One Pty Ltd, a mining consultancy which has been paid at usual commercial rates for the work which has been completed for Elementos Limited.

Mick McKeown has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' Mick McKeown consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

MINERAL RESOURCES AND REPORTING

Mineral Resources which are not Ore Reserves do not have demonstrated economic viability. The estimate of Mineral Resources may be materially affected by economic, environmental, permitting, legal, title, taxation, socio-political, marketing, or other relevant issues.

TIN EQUIVALENT CALCULATIONS

The tin equivalency is calculated by the formula: $Sn_eq \% = Sn\% + Cu\% /(tin price = US$22,560 per tonne, copper price = US$7,155 per tonne). No metallurgical assumptions have been built into the resource estimate, although the company expects that the tin and copper will be recovered into concentrates in a modern concentrator. The Company notes that Cleveland was a historical mine operated by Aberfoyle Limited between 1968 and 1986. During the life of the Cleveland operations, 5.7 million tonnes of ore was mined and processed to produce to approximately 24,000 tonnes of tin and 10,000 tonnes of copper in concentrates. The historical life of mine tin and copper recoveries averaged <math>60\%$ - best tin recovery 69% (1969 and 1973) and copper 76% (1973). The Company believes that recoveries could be substantially improved using modern day tin processing technology. The tailings resource has been subject to a scoping study and metallurgical test work which has demonstrated that tin and copper concentrates can be recovered.

The Company believes that all the metals included in the metal equivalent calculations have a reasonable potential to be recovered and it does not believe there are any factors that would result in metallurgical recoveries being materially lower than historically achieved.

Appendix One – Mineral Resources Report Summary

Resource Estimate

	Cleve	land Tin an	d Copper	Mineral Reso	urce Estima	ate ^{#*}	
Cut-off Grade % Sn	Category	Resource Tonnes	Tin grade %Sn	Copper grade %Cu	Tin Eq Sn %Eq Sn	Tin tonnes	Tin Equivalent tonnes
0.35%	Indicated	5,002,000	0.69%	0.28%	0.78%	34,500	39,000
0.35%	Inferred	2,442,000	0.56%	0.19%	0.63%	13,900	15,300
	Total	7,444,000	0.65%	0.25%	0.73%	48,400	54,300
	Cleveland	d Tin and C	opper Tailii	ngs Mineral R	Resource Es	stimate ^{#*}	
0.00%	Inferred	3,985,000	0.30%	0.13%	0.34%	11,500	13,000

Cleveland Tungsten Mineral Resource Estimate**				
Cut-off grade (% WO₃)	Category	Tonnes (kt)	Tin (%WO3)	Contained WO ₃ (tonnes)
0.20%	Inferred	3,970,000	0.30%	12,000

*Where Sn Equivalent metal values were made for tin copper mineralisation, metal prices current at the time of writing were used, that is, US\$22,560 per tonne for tin and US\$7,155 per tonne for copper..

Resource Overview

Cleveland is an underground tin and copper mine that was operated by Aberfoyle Limited between 1968 and 1986. Aberfoyle was a major operator in the tin and tungsten mining industry with four operating tin and tungsten mines in Australia.

Tasmania's three largest tin mines occur on the West Coast: Renison - 35 kilometres south of Cleveland, Mt Bischoff - 15 kilometres north-east of Cleveland, and Cleveland itself. The Heemskirk tin deposit occurs some 45 kilometres south-west of Cleveland.

Renison has been in production for over a century and is still operating, and Mt Bischoff was mined for a total of 77 years. Cleveland, in contrast, has only been mined for a total of 27 years.

Geological records exist from the Aberfoyle operations to allow for the estimation of Mineral Resources and reporting of the Mineral Resources in accordance with the JORC Code. 111 samples from 87 Aberfoyle drill cores were re-split and re-assayed to confirm the reliability of the tin and copper sampling and assaying methods used by Aberfoyle. The 111 samples produced excellent reconciliations to original work and high confidence in the original results.

There are 2,020 diamond holes into the deposits for a total drilled length of over 130,000 metres, and more than 75,000 assay points for tin, copper, tungsten and other selected metals.

A substantial amount of data relating to Cleveland has now been digitised and includes diamond drill hole collar locations, drill hole surveys, assays, lode intercepts, surface contours (2013 LiDAR survey), decline, mining voids and other underground development.

Cleveland Mine Tin-Copper Resource

In the Cleveland mine, tin and copper mineralisation is principally hosted in semi-massive sulphide lenses that have replaced limestone and can be described as a carbonate replacement system similar to that encountered at Renison and Heemskirk. Tin occurs as cassiterite (tin oxide) and in very minor amounts as stannite (copper/iron/tin sulphide), and copper as chalcopyrite (copper/iron sulphide).

The tin and copper lenses are vertically dipping deposits with strike lengths of up to 500 metres, across strike thicknesses of up to 30 metres and down-dip extents of up to 800 metres. Mineral Resources have been estimated for the tin and copper in these individual lenses.

The block model has been established with a parent block size of $10m \times 10m \times 10m$ and sub-calling allowed to a minimum block size of $2.5m \times 2.5m \times 2.5m$. A bulk density of 3.1 tonnes/m³ was used and reported on a dry basis. The tin and copper grades were interpolated into the blocks representing the lenses using an inverse distance squared method.

Tin-Copper Tailings

The tonnage of tin and copper tailings from the previous Aberfoyle operation has been confirmed by data received from a recent LiDar survey and drilling campaign. Using an historic survey of the tailings dam locations before the dams were built and the recent 2013 LiDAR survey of the Cleveland site, the volume of the tailings was calculated and then converted to a tonnage using bulk densities determined from the recent sonic drilling exercise conducted as part of the permitting process. This tonnage was reconciled to the reported operating records of the Aberfoyle processing plant between 1969 and 1986 and showed an excellent correlation, adding further confidence to the tailings resource estimate.

The tailings are stored on-site in two tailings dams, the surfaces of which are covered in limited regrowth. Because the spatial distribution of both the grade and tonnage of the tailings in the dams is unknown, the resources have been classified as Inferred. A zero cutoff grade has been used because all the tailings will be reclaimed and processed for tin and copper recovery.

Cleveland Tungsten Resource

In the Cleveland mine, tungsten mineralisation occurs as wolframite ((Fe,Mn)WO₄), hosted in a porphyry style quartz stockwork (Foley zone) containing an Inferred Resource of 12,000 tonnes of WO₃ with a cut-off grade of 0.2% WO₃ applied.

In addition to the Inferred Mineral Resource, the Foley zone includes a substantial conceptual exploration target (see Elementos ASX release November 2013).

Appendix Two – Supporting Data Tables

Table 1 Tin copper mineralisation JORC Table – Section 1 Sampling Techniques and Data.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to obtain samples which were sawn in half longitudinally then one half of the core was submitted for assaying. The half core was crushed and pulverised prior to assay. Sn assays were made using pressed powder XRF. The tin-copper mineralisation occurs associated with sulphide replacement of limestone beds; the mineralisation is visually distinct but the principal tin bearing mineral, cassiterite, is not usually visible to the naked eye.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 All samples came from diamond drilling, generally ranging from 30mm to 45mm in diameter, using conventional drill tubes. Core was not oriented.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 A sampling of drill logs by the author did not reveal that core loss was a problem during diamond drilling. The reliability of core recovery was confirmed in discussions with a former Aberfoyle geologist. Aberfoyle reported that core recovery at Cleveland was consistently good (Cox, 1967). This is in accordance with the reported ground conditions in the Cleveland mine which have been reported as competent to highly competent (Everett, 1977) and Buckland, 1980). Tin and copper minerals occur in such concentrations and grain sizes, and the sample preparation methods were such, that there is the likelihood of sample bias due to preferential loss/gain of fine/coarse material is very low,
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 A sampling of drill logs by the author indicated that the logs contained adequate locational, sampling and assay data. Lithological logging was not always carried out but, given the style of the mineralisation, even though not ideal, this lack is tolerable. Paper logs exist for the holes drilled. No geotechnical logging was made, however, good ground conditions were reported from the mine which was successfully mined from 1968 to 1986 using trackless mining methods with mine development dimensions of about 5m X 5m.Geotechnical logging is recommended for future drilling.

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was sawn in half longitudinally, and crushing and pulverising were subject to specific and definite protocols. Aberfoyle paid particular attention to sampling technique and sample preparation (Cox, 1967). The reliability of sub-sampling techniques and sample preparation has been confirmed by re-sampling and reassaying of existing drill core by Rockwell Minerals (McKeown, 2011). Sample sizes were appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assays were conducted at the Tasmanian Mines Department Laboratory at Launceston and at the Aberfoyle laboratory on the Cleveland mine site; check samples, although not recorded in the drill logs, were used (Cox, 1967). The reliability of the assays is also partly confirmed by reconciliations of resources to production (Dronseika, 1986). Total Sn assays were made by pressed powder or fused bead XRF which are appropriate methods for the style of tin occurrence. The reliability of Sn assays has been confirmed by re- sampling and re-assaying of existing drill core by Rockwell Minerals (McKeown, 2011).

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 2020 cored diamond drill holes were completed. 1725 lens intersections were used for this resource estimate. Lens intersections were noted by Aberfoyle geologists during the operation of the mine from 1968 to 1986. The intersections were verified by successive mine geologists and recorded by Dronseika (1986). The intersections for the estimate for this report were based on the Aberfoyle records, modified by the author where considered appropriate. Verification of assay data was carried out routinely by Aberfoyle staff. Check samples, although not recorded in the drill logs, were in use (Cox, 1967). The reliability of the Aberfoyle assays is also partly confirmed by reconciliations of resources to production made by Aberfoyle (Dronseika, 1986) and during the preparation of the estimates for this report. Laboratory assay reports are filed with the hard copy drill logs.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Locations of diamond drill hole collars, channel samples and mine workings were established by mine surveyors. About 20% of holes were missing the records of collar coordinates, however, many of these missing collar coordinates have been measured from 1:500 scale Aberfoyle mine cross-sections. At the time of this resource estimate, of the 2020 holes drilled, 119 still lacked collar coordinates and could not be used. This estimate for this report employed a local grid, known as Hall's grid, which is oriented parallel to the general strike of the tin copper lenses. In 2013, high resolution topography over the mine site was acquired using LiDAR. This topography was used during the preparation of this estimates for this report.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing was sufficient for estimation of Sn grades by ordinary kriging and Cu and soluble Sn by inverse distance squared method and for classification as Indicated or Inferred Mineral Resources according to the JORC Code. Samples were composited to 1m lengths.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Holes were generally drilled at high angles to the strike and dip of the tin copper lenses which, given the style of mineralisation, was appropriate for minimising sampling bias from this factor.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	• Most analyses were made in the laboratory on the Aberfoyle mine site. Given the style of the tin copper mineralisation, and the proximity of the core splitting area and the sample preparation area to the laboratory, samples were not susceptible to interference.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	• There are no known audits or reviews by personnel outside Aberfoyle. However, there was a culture of internal reviewing of the geological procedures including at least one review of sampling methods (Cox, 1967).

Table 2 Hard rock tin-copper mineralisation JORC Table - Section 2 Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Exploration Licence EL7/2005 covers the Cleveland mine and Mineral Resource. EL7/2005 is held by Lynch Mining Pty Ltd. Elementos Ltd, through its wholly owned subsidiary Rockwell Minerals (Tasmania) Pty Ltd, is currently entitled to 50% of EL7/2005 with an option to acquire 100%. An agreement is in place covering purchase terms for the optional 50% interest of EL7/2005 based on the payment of \$50,000 per month to 15 January 2015, for a total payment of \$750,000 at which point Elementos Ltd will own 100% of the project. The proposed project area lies in Forestry Tasmania Managed Land.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	See Table 10 below for a summary of work done by other parties.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The Cleveland tin copper mineralisation is hydrothermal mineralisation associated with Devonian granite which outcrops within 5 kilometres of the mine and is interpreted from gravity surveys to lie about 4 kilometres beneath the surface at the mine. The host sedimentary rocks were intruded by the Devonian-Carboniferous Meredith granite. A quartz porphyry dyke occurs in the bottom of the mine below 350m from the surface. The tin copper mineralisation occurs as semi-massive sulphide lenses consisting of pyrrhotite and pyrite with cassiterite and lesser chalcopyrite and stannite, and quartz, fluorite and carbonates. Sulphide minerals make up 20% to 30% of the mineralisation. The semi-massive sulphide lenses have formed by the replacement of limestone and are geologically similar to the tin bearing semi-massive and massive sulphide mineralisation at Mt Bischoff and Renison.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 11 below for coordinates, directions and lengths of diamond drill holes at Cleveland.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Where required for averaging, assay results were length weighted. Where Sn Equivalent metal values were made for tin copper mineralisation metal prices current at the time of writing were used, that is, US\$22,560 per tonne for tin and US\$7,155 per tonne for Cu.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Holes were generally drilled at high angles to the strike and dip of the tin copper lenses which, given the style of mineralisation, was appropriate. In the tables of lens intersections below, the lengths listed are down- hole lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See Figures 4 and 5 below. It was not practical to create a meaningful plot of all the drill hole collars but a perspective view of the holes is shown in Figure 4. It was not practical to include the list of all the intersections in this report; the intersections for tin copper lens B South are attached as indications of the range of grades and down hole lengths (see Table 12).
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 1725 lens intersections were used for this resource estimate. It was not practical to include the list of all the intersections in this report; the intersections for tin copper lens B South are attached as indications of the range of grades and down hole lengths (see Table 12).

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Modelling of the granite, based on geophysical gravity survey, indicates that the top of the granite is nearly 4 kilometres deep at Cleveland (Leaman and Richardson, 1989 and 2003). The metallurgical amenability of the tin copper mineralisation was established by mining and processing operations from 1968 to 1986. The acceptable geotechnical conditions in the mine were established by successful mining operations from 1968. Groundwater inflows to the mine were easily handled by conventional pumping techniques during mining operations from 1968 to 1986.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• There is excellent potential for further exploration of the Cleveland tin copper mineralisation. The definition and prioritisation of Exploration Targets is continuing and the results of this exercise will be reported separately when completed. The Celveland tin copper mineralisation is open at depth and along strike, including several shallow targets near the surface.

 Table 3 Hard rock tin-copper mineralisation JORC Table – Section 3 Estimation and Reporting of Mineral Resources.

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	The specific measures taken by Aberfoyle to ensure database integrity are not known but the creation of a digital database has allowed for on-going review of the integrity of the data.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mick McKeown was employed as a geologist by Aberfoyle Limited from 1970 to 1973 and was professionally and personally acquainted with many of the Aberfoyle staff who worked at Cleveland. He made several visits to the Cleveland mine during the 1970s. In 2012, he visited the mine site and examined drill core from Cleveland held at the Mornington Core Store of Mineral Resources Tasmania.

Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The tin copper mineralisation at Cleveland occurs as semi-massive sulphide lenses consisting of pyrrhotite and pyrite with cassiterite and lesser chalcopyrite and stannite, and quartz, fluorite and carbonates. Sulphide minerals make up 20% to 30% of the mineralisation. The semi-massive sulphide lenses have formed by the replacement of limestone and are geologically similar to the tin bearing semi-massive and massive sulphide mineralisation at Mt Bischoff and Renison. A geological interpretation was devised by the author of this report using cross sections showing drill holes with tin assays, and fact geology as mapped by Aberfoyle geologists. The interpretations. In many places, the tin-copper mineralisation consists of intercalated layers of replaced limestone and chert. Aberfoyle geologists did not always have such chert bands assayed which was of little consequence during a time when all geological compilations were made by hand. However, these un-assayed intervals are unacceptable in a digital database that is going to be used for three dimensional modelling of grades. Consequently, records for these un-assayed intervals had to be added to the database and were allocated zero Sn and Cu grades.

Criteria	JORC Code explanation	Commentary
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 Hall's Formation, the geological formation which contains the lenses of mineralisation, generally dips vertically or steeply to the east and is known over a strike length of 1000m, an across strike width of about 200m, and a down-dip length of over 800m (Ransom and Hunt, 1975 and Dronseika, 1986). For this resource estimate, 18 lenses of tin copper mineralisation were interpreted ranging in strike lengths from about 100m to about 600m, with across strike widths of up to about 20m, and down dip lengths of up to about 300m. The lenses occur from surface outcrop to 700m below the surface.

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Most assays were taken over lengths of less than 1.0m with the mode occurring at 0.8m to 1.0m. A composting length of 1.0m was used for this resource estimate. Grade estimates for Sn were made by ordinary kriging. Estimates of Cu and soluble Sn were made by the inverse distance squared method. Sn grade interpolations were made using four geostatistical domains which were allocated based on the number of the number of composited Sn samples in each lens; the mean Sn grade of composited samples in each lens; the variance of Sn grades of composited samples in each lens; the variance of Sn grades of composited samples in each lens; the variance of Sn grades of composited samples in each lens; the proximity of lenses; and the general strike and dip of each lens. For Sn grade interpolations, the search method used was ellipsoidal with a major search axis length of 200m and the semi-major and minor search axes proportioned using the ranges of the relevant variograms. For Cu and soluble Sn grade interpolations an isotropic search of 200m was used. A previous, pre-JORC, resource estimate made by Aberfoyle geologists at mine closure in 1986 totaled 5.2 million tonnes at 0.70% Sn and 0.31% Cu at a 0.35% Sn cutoff grade. At the same cut-off grade, the estimate for this report totaled 7.44 million tonnes at 0.65% Sn and 0.25% Cu. The differences between the actual extent of the estimates, and differences between the actual extent of the estimates, and differences between the actual extent of the estimates, and differences between the two dimensional estimate.

Criteria	JORC Code explanation	Commentary
		 Beyond the assumption that Cu would be recovered in processing, as was the case when the mine operated from 1968 to 1986, no other assumptions about the recovery of by-products were made. No estimates of S grade or the grades of other deleterious elements were made. Mineralisation was modelled as three dimensional blocks of parent size 10m X 10m X 10m with sub-celling allowed to 2.5m X 2.5m X 2.5m. The 10m length of the parent block equates to about half the cross-section spacing on which drilling was concentrated. Computer assisted estimations were made using Gemcom Surpac software. Depletion was made for mining. No assumptions were made regarding the modelling of selective mining units. No assumptions were made about the correlation between variables. Wireframes of the geological interpretations of the tin copper lenses were used to assign lens codes to blocks i n the block model. Grades were interpolated into each lens using only composited samples from within the lens. Statistical analyses of the Sn, Cu and soluble Sn assays showed that there were no rogue outliers, that is, high grade assays that did not fit the distributions and which consequently indicated the need for cutting of high grades.

Criteria	JORC Code explanation	Commentary
		 Validation of the block model was made by: checking that drill holes used for the estimation plotted in expected positions; checking that flagged lens intersections lay within, and corresponded with, lens wireframes; ensuring whether statistical analyses indicated that grade cutting was required; checking that the volumes of the wireframes of lenses matched the volumes of blocks of lenses in the block model; comparing the mean of composited sample grades within a lens with the mean grades of the lens in the block model; checking plots of the grades in the block model against plots of diamond drill holes; reconciling the tonnage and grades of the mined out blocks in the block model against historical production: historical production from 1968 to 1986 was estimated from Aberfoyle reports as 5.645 million tonnes at 0.74% Sn and 0.28% Cu; at a mining recovery of 90% and a dilution rate of 10% in the run of mine mill feed, the mined out blocks in the block model provided a material inventory of 5.630 million tonnes at 0.75% Sn and 0.29% Cu. This is very good agreement.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	All assays were reported on a dry basis and all tonnages and grades are reported on a dry basis.

Criteria	JORC Code explanation	Commentary
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 A cut-off grade of 0.35%, at a tin price of A\$25,000 per tonne implies that material with a contained metal value of about \$90 could be treated at a profit, which seems reasonable, even at relatively modest metallurgical recoveries. This was also the cut-off grade used by Aberfoyle for its final resource estimate (Dronseika, 1986).
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Mineral Resources were estimated, not Ore Reserves, and no mining factors were applied.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	Beyond the assumption that Sn and Cu could be recovered using traditional tin and copper processing, as was the case when the mine operated from 1968 to 1986, no other metallurgical assumptions were made.

Criteria	JORC Code explanation	Commentary
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Pitt and Sherry Consultants have been retained to design and plan for waste and tailings disposal. Environmental approvals for operating a mine and processing plant at Cleveland are currently being sought.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A bulk density of 3.1 tonnes/m³ was used based on the results of 960 pycnometer determinations of specific gravities made from drill core samples of tin copper lenses. The principal gangue sulphide mineral present at Cleveland is pyrrhotite. A bulk density of 3.1 tonnes/m³ for pyrrhotite bearing limestone implies that the rock contains about 20% pyrrhotite which is in line with descriptions of the deposit. A bulk density of 3.1 tonnes/m³ was used for this resource estimate and this was similar to the bulk densities used by Aberfoyle which ranged from 3.05 to 3.08 tonnes/m³.

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The resources were classified by the author as Indicated and Inferred based on current understanding of geological and grade continuity. Parts of the deposit, where drilling intensity was adequate to reasonably reliably define the lens shapes and extents, and to indicate reasonable grade continuity, were classified as Indicated Mineral Resources, and the balance as Inferred Mineral Resources. The classification reflected the author's confidence in the location, quantity, grade, geological characteristics and continuity of the Mineral Resources.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	• The process used to create this resource estimate was reviewed by Rod Williams, geologist with Norvale Pty Ltd, and this report has been peer reviewed by Mining One.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate and the procedures used. 	 The estimates made for this report are global estimates. Predicted tonnages and grades made from such block estimates are useful for feasibility studies, and long, medium and short term mine planning. Individual, as distinct from aggregated, block estimates should not be relied upon for block selection for mining. Local block model estimates, or grade control estimates, whose block grades are to be relied upon for selection of ore from waste at the time of mining will require additional drilling and sampling of blast holes and underground development. Reconciliation of the tonnage and grades of mined out blocks in the block model against historical production has been made: historical production from 1968 to 1986 was estimated from Aberfoyle reports as 5.645 million tonnes at 0.74% Sn and 0.28% Cu; at a mining recovery of 90% and a dilution rate of 10% in the run of mine mill feed, the mined out blocks in the block model provided a material inventory of 5.630 million tonnes at 0.75% Sn and 0.29% Cu. This is very good agreement.

 Table 4 Tailings tin-copper mineralisation JORC Table – Section 1 Sampling Techniques and Data.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The tailings grade is based on sampling in the Cleveland Mill and subsequent metallurgical mass balances made by Aberfoyle during operations from 1968 to 1986. Unconsolidated samples of tailings were collected in 2007 from air core drilling of 31 holes in tailings dams 1 and 2.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Holes drilled to test the tailings in 2007 were air cored.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	• The air core drilling technique is designed for recovering samples from unconsolidated ground. The sample is returned from the face of the bit between an inner and outer tube which minimises sample contamination from the walls of the hole.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	All samples acquired from the air core drilling in 2007 were logged for material type and extent of apparent oxidation. Samples were submitted to a commercial laboratory for particle sizing determinations and assay.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling in the Cleveland Mill was subject to metallurgical mass balances from 1968 to 1986. Samples from air core holes drilled in 2007 to test tailings were dried and split using a rotary splitter. The samples were of tailings, that is, of material which had already been crushed and pulverised. Sampling and sample preparation methods were appropriate for the testing of the tailings that was undertaken.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were taken routinely in the Cleveland Mill and routinely assayed in the laboratory at Cleveland. Assaying in the Cleveland Mill was subject to metallurgical mass balances from 1968 to 1986. The quality control procedures used in the Cleveland Mill are not specifically known but the use of check samples was routine (Cox, 1967). The reliability of Sn assays made in the Cleveland laboratory has been confirmed by re-sampling and reassaying of existing drill core by Rockwell (McKeown, 2011). Total Sn assays were made by pressed powder XRF which is appropriate methods for the style of tin occurrence in the tailings.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples were taken routinely in the Cleveland Mill and routinely assayed in the laboratory at Cleveland. Assaying in the Cleveland Mill was subject to metallurgical mass balances from 1968 to 1986.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Collar positions of the air core holes drilled in 2007 were picked up by a registered Surveyor. Drill hole collars were picked up in MGA coordinates. In 2013, high resolution topography over the mine site was acquired using LiDAR. This topography was used during the preparation of this resource estimate.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sampling in the Cleveland Mill was routine and subject to metallurgical mass balances from 1968 to 1986. A very large number of tailings samples were taken during that time, probably at least one per day from 1968 to 1986.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Not applicable to mill sampling. Air core holes were drilled vertically which is perpendicular to the general stratification in the tailings dams.
Sample security	The measures taken to ensure sample security.	 Samples taken in the Cleveland mill were submitted to the laboratory attached to the mill. Given the proximity of mill to the laboratory, samples were not susceptible to interference. Supervision of the drilling of the air core holes in 2007 and transportation of the samples to the Burnie Research Laboratory were undertaken by the supervising geologist for Lynch Mining.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Aberfoyle made estimates of tonnage and grade of tailings made in 1981 (Foo, 1981) which were confirmed in 2008 (Moony, 2008). These estimates were in reasonable agreement with the estimates made for this report. The volumes of the tailings dams were estimated by Pitt and Sherry following acquisition of high resolution topographic data using LiDAR in 2013. The mass of tailings estimated by Pitt and Sherry were in excellent agreement with the mass estimated for this report. The Sn and Cu grades from the samples acquired from the 2007 air core drilling of the tailings confirmed the reliability of the Sn and Cu grades of the tailings estimated for this report.

Table 5 Tailings tin-copper mineralisation JORC Table - Section 2 Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• Exploration Licence EL7/2005 covers the Cleveland mine and Mineral Resource. EL7/2005 is held by Lynch Mining Pty Ltd. Elementos Ltd, through its wholly owned subsidiary Rockwell Minerals (Tasmania) Pty Ltd, is currently entitled to 50% of EL7/2005 with an option to acquire 100%. An agreement is in place covering purchase terms for the optional 50% interest of EL7/2005 based on the payment of \$50,000 per month to 15 January 2015, for a total payment of \$750,000 at which point Elementos Ltd will own 100% of the project. The proposed project area lies in Forestry Tasmania Managed Land.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 See Table 10 below for a summary of work done by other parties.
Geology	 Deposit type, geological setting and style of mineralisation. 	Not applicable.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Not applicable.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Estimation of metal equivalents were made assuming metal prices current at the time of writing, that is, \$22,560 per tonne for tin and \$7,155 per tonne for copper.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Not applicable.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Not applicable.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Not applicable.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Not applicable.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Samples acquired from air core drilling of tailings in 2013 will be submitted for assay and metallurgical testing in 2014.

 Table 6 Tailings tin-copper mineralisation JORC Table – Section 3 Estimation and Reporting of Mineral Resources.

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	• The specific measures to ensure the integrity of the Aberfoyle metallurgical data are not known but, given that the data was collected at a large operating mill, it is reasonable to assume that the data is sound.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mick McKeown was employed as a geologist by Aberfoyle Limited from 1970 to 1973 and was professionally and personally acquainted with many of the Aberfoyle staff who worked at Cleveland. He made several visits to the Cleveland mine during the 1970s. In 2012, he visited the mine site and examined drill core from Cleveland held at the Mornington Core Store of Mineral Resources Tasmania.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Not applicable.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource. 	• Tailings Dam 1 is 300m long and 100m wide with a maximum depth of about 20m. Tailings Dam 2 is 400m long and up to 200m wide with a maximum depth of about 35m.

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 There is no block model of the tailings deposits. The tonnages and grades for this report were estimated from reports of tailings recorded by Aberfoyle as having been discharged from the Cleveland Mill between 1968 and 1986.

Criteria	JORC Code explanation	Commentary
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	 All assays were reported on a dry basis and all tonnages and grades are reported on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	• The resource is quoted at 0.0% Sn (total) cut-off grade. Given that all the tailings will probably need re-treatment without selectivity during reclamation, this is reasonable.
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Mineral Resources were estimated, not Ore Reserves, and no mining factors were applied.
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	 Foo (1981) considered that mill recoveries from treatment of run of mine ore of 65% for Sn could be maintained under best operating conditions at the time. This is considerably better than the mill recoveries during the routine operation of the mill up until that time. This implies that some, at least, of the tin in the tailings dams should be recoverable. Stribley et al. (1984) reported that mill recoveries from pilot scale treatment of tailings of between 33% and 45% for Sn were attainable using conventional gravity and flotation processing and 48-69% Sn recovery using preconcentration by flotation and matte fuming.

Criteria	JORC Code explanation	Commentary
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Pitt and Sherry Consultants have been retained to design and plan for waste and tailings disposal. Environmental approvals for operating a mine and processing plant at Cleveland are currently being sought.
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Not applicable - tailings discharged from the Cleveland Mill were measured in tonnes.

Criteria	JORC Code explanation	Commentary
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	• The mass and grades of the tailings have been estimated from the operating statistics of a competently run mill and are expected to be reasonably reliable. The mass and location of the tailings is also now known from survey data acquired in 2013. The metallurgical amenability of the tailings for Sn and Cu recovery will be made during 2014. Until the metallurgical amenability has been confirmed, the resource of tailings has been classified as Inferred.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	The method of estimation of the tailings resource has been reviewed by Mike Adams of Rockwell Minerals Limited and David Foster of Mining One Pty Ltd.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The quantity and grades of the tailings have been estimated from the operating statistics of a competently run mill and are reasonably reliable. However, the spatial distribution of the tailings, both for tonnage and grades is not known and consequently the resource of tailings has been classified for this report as Inferred.

Table 7 Tungsten mineralisation JORC Table – Section 1 Sampling Techniques and Data.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond drilling was used to obtain 2.5m samples which were sawn in half longitudinally then one half of the core was submitted for assaying. The half core was crushed and pulverised prior to assay. Sn assays were made using pressed powder or fused bead XRF. The tungsten mineralisation occurs in a quartz stock-work and in minor greisen. The quartz veining is readily visible as is the wolframite within the quartz veining.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 All samples came from diamond drilling, generally about 45mm in diameter, using standard core tubes.

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 A sampling of drill logs by the author did not reveal that core loss was a problem during diamond drilling. The reliability of core recovery was confirmed in discussions with a contemporary Aberfoyle geologist. Aberfoyle reported that core recovery at Cleveland was consistently good (Cox, 1967). This is in accordance with the reported ground conditions in the Cleveland mine which have been reported as competent to highly competent (Everett, 1977) and Buckland, 1980) and, in the quartz porphyry host rock, as excellent (Dronseika, 1983). Core recovery in the tungsten mineralisation was in excess of 95% (Dronseika, 1983).
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 6796.9m of core, from 26 holes, was logged in detail noting country rock, wall-rock alteration, structures, mineralogy, vein thickness and vein to core angle (Dronseika, 1983). A sampling of drill logs by the author indicated that the logs contained adequate locational, geological, sampling and assay data. In addition, there are 64 petrological and mineralogical descriptions made under the microscope by AMDEL and Latrobe University (included in Dronseika, 1983).

Criteria	JORC Code explanation	Commentary
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was split longitudinally and crushing and pulverising were subject to specific and definite protocols. Aberfoyle paid particular attention to sampling technique and sample preparation (Cox, 1967).
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were routinely assayed in the laboratory at Cleveland. Thirty samples were re-split and re-assayed by AMDEL Laboratories. Some samples were re-assayed by AMDEL Laboratories. The correlation of assay results for WO₃ was acceptable (Hample and Waters, 1983).

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Samples were routinely assayed in the laboratory at Cleveland. Thirty samples were re-split and re-assayed by AMDEL Laboratories. Some samples were re-assayed by AMDEL Laboratories. The correlation of assay results for WO₃ was acceptable (Hample and Waters, 1983).
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Locations of drill hole collars and mine workings were established by mine surveyors. This report estimate employed a local grid, known as Hall's grid, which is oriented parallel to the general strike of the tin copper lenses. In 2013, high resolution topography over the mine site was acquired using LiDAR. This topography was used during the preparation of this resource estimate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Data spacing was sufficient for creation of useful WO₃ variograms with relatively low nugget effect and ranges for spherical models of up to 150m (McArthur, 1983 in Dronseika, 1983).
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The strike and dip of the quartz porphyry intrusion and the quartz vein stock-work mineralisation were well known from the beginning of systematic evaluation by Aberfoyle in 1970 and the drill holes were oriented accordingly. Samples were composited to 2.5m lengths.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	 Most analyses were made in the laboratory on the Aberfoyle mine site. Given the style of the tin copper mineralisation, and the proximity of the core splitting area and the sample preparation area to the laboratory, samples were not susceptible to interference.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There are no known audits or reviews by personnel outside Aberfoyle. However, there was a culture of internal reviewing of the geological procedures including at least one review of assaying methods (Hample and Waters, 1983).

 Table 8 Tungsten mineralisation JORC Table – Section 2 Reporting of Exploration Results.

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	• Exploration Licence EL7/2005 covers the Cleveland mine and Mineral Resource. EL7/2005 is held by Lynch Mining Pty Ltd. Elementos Ltd, through its wholly owned subsidiary Rockwell Minerals (Tasmania) Pty Ltd, is currently entitled to 50% of EL7/2005 with an option to acquire 100%. An agreement is in place covering purchase terms for the optional 50% interest of EL7/2005 based on the payment of \$50,000 per month to 15 January 2015, for a total payment of \$750,000 at which point Elementos Ltd will own 100% of the project. The proposed project area lies in Forestry Tasmania Managed Land.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• All exploration of Foley Zone was done by Aberfoyle Limited or its subsidiaries between 1978, when the zone was intercepted on 17 Level and in the decline between 20 and 22 levels, and 1983.

Criteria	JORC Code explanation	Commentary
Geology	 Deposit type, geological setting and style of mineralisation. 	 The tungsten mineralisation at Cleveland occurs as wolframite and minor scheelite in a quartz stock-work and in minor greisen. The quartz stock-work has formed as a halo around a greisenised quartz porphyry dyke that acted as a pathway for the mineralising fluids which deposited the tungsten mineralisation in the stock-work and the greisenised dyke itself. The dyke dips vertically and has a known strike length of 100m, an across strike thickness of up to 60m and a down-dip extent of 800 metres (Jackson et al., 2000). The tungsten bearing quartz stock-work and greisen is known as Foley zone. Foley zone is currently considered to dip vertically and has a known strike width of up to 300 metres and a down-dip extent of about 900 metres (Dronseika, 1983).

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Table 11 below for coordinates, directions and lengths of diamond drill holes at Cleveland.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Where WO₃ grades of drill core samples have been averaged, length weighting was used. Statistics revealed no rogue high grade WO₃ assays and no sample cutting was applied.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 In Table 13, down-hole lengths of intercepts have been reported, true widths are not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See Figures 4 and 6 below. It was not practical to create a meaningful plot of all the drill hole collars but a perspective view of the holes is shown in Figure 4.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• 37 intersections of Foley zone were used for this resource estimate and a summary of the intersections is attached (see Table 13).
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Most data was obtained from the logging of diamond drill core although the upper margin Foley zone was exposed in the lower levers of the mine.

Criteria	JORC Code explanation	Commentary
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Infill diamond drilling of Foley zone above 850m RL is required to increase confidence in the Mineral Resource which is currently classified as Inferred. Diamond drilling to further explore the Exploration Target of Foley zone below 850m RL will require the development of a suitable drilling platform close to the bottom of the current mine. Both drilling programmes can take place once the mine has been de-watered which Elementos is hoping to achieve over the next two to three years.

 Table 9 Tungsten mineralisation JORC Table – Section 3 Estimation and Reporting of Mineral Resources.

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	• The specific measures taken by Aberfoyle to ensure database integrity are not known but the creation of a digital database is allowing for on-going review of the integrity of the data.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mick McKeown was employed as a geologist by Aberfoyle Limited from 1970 to 1973 and was professionally and personally acquainted with many of the Aberfoyle staff who worked at Cleveland. He made several visits to the Cleveland mine during the 1970s. He also visited the mine site in 2012 and examined drill core from Cleveland held at the Mornington Core Store of Mineral Resources Tasmania.

Criteria	JORC Code explanation	Commentary
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The geological interpretation was devised by the author of this report. Halls Formation, the geological formation which contains the lenses of tin-copper mineralisation and the stockwork of tungsten mineralisation, dips sub-vertically with a general steep dip to the east and is known over a strike length of 700m, an across strike width of about 200m, and a down-dip extent of over 800m (Ransom and Hunt, 1975 and Dronseika, 1986). The tungsten mineralisation at Cleveland occurs as wolframite and minor scheelite in a quartz stock-work and in minor greisen. The quartz stock-work has formed as a halo around a greisenised quartz porphyry dyke that acted as a pathway for the mineralising fluids which deposited the tungsten mineralisation in the stock-work and the greisenised dyke itself. The dyke dips vertically and has a known strike length of 100m, an across strike thickness of up to 60m and a down-dip extent of 800 metres (Jackson et al., 2000).
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	• The tungsten bearing quartz stock-work and greisen is known as Foley zone. Foley zone is currently considered to dip vertically and has a known strike length of about 300 metres, an across strike width of up to 300 metres and a down-dip extent of about 900 metres (Dronseika, 1983).

Criteria	JORC Code explanation	Commentary
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Mineralisation was modelled as three dimensional blocks from 10m X 10m X 10m to 2.5m X 2.5m X 2.5m in size. Grade estimates of WO₃ were made by ordinary kriging. No assumptions were made about the recovery of by-products. No estimates of S grade were made.

Criteria	JORC Code explanation	Commentary
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	All assays were reported on a dry basis and all tonnages and grades are reported on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The cut-off grade of 0.20% and the current WO₃ concentrate price of \$36,000 per tonne implies that material with a contained metal value of about \$70 could be treated at a profit. This appears reasonable even at relatively modest metallurgical recoveries. This was also the cut-off grade used by Aberfoyle for its final resource estimate
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made. 	 Mineral Resources were estimated, not Ore Reserves, and no mining factors were applied.

Criteria	JORC Code explanation	Commentary
Metallurgical factors or assumptions	 The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made. 	No metallurgical assumptions were made.
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 Pitt and Sherry Consultants have been retained to design and plan for waste and tailings disposal. Environmental approvals for operating a mine and processing plant at Cleveland are currently being sought.

Criteria	JORC Code explanation	Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 A bulk density of 2.85 tonnes/m³ was used. This was the same as that used in the historical estimate made by Aberfoyle.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The resources were classified Inferred based on the author's current confidence in geological and grade continuity.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	This report has been peer reviewed by Mining One.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 This estimate of the tungsten Mineral Resources in Foley Zone is a global estimate. No production data is available for comparison.

References

Buckland, K.R., 1980. Tin-copper ore mining at Cleveland Tin Limited, Luina, Tas. <u>in</u> Woodcock, J.T., 1980, Mining and Metallurgical Practices in Australasia, Monograph Series No. 10, The Australasian Institute of Mining and Metallurgy.

Cox, R., 1967. The use of comparative sampling methods at Cleveland mine, Tasmania, March 1967. Unpublished report, Aberfoyle Tin Development Partnership, Cleveland Development Project.

Dronseika, E.V., 1983. Geological assessment of the Foley zone mineralisation at Cleveland mine Tasmania, May 1983. Unpublished report f **Dronseika, E.V., 1986.** Geological Resource Assessment, Cleveland Tin Mine, as at End of Milling-Mining Operations, 12th June 1986. Unpublished report for Aberfoyle Resources Limited, Cleveland Division by E.V. Dronseika, Senior Mine Geologist.

or Cleveland Tin Ltd.

Everett, H.R., 1977. Current mining practice at Cleveland mine of Abminco N.L. in Underground Operators' Conference, October 1977, The AusIMM Broken Hill Branch.

Hample, B.W. and Waters, M.T., 1981. Accuracy of Foley mine assays in comparison to outside assay services. Internal Memorandum to G.A. McArthur, 16th July 1981, Cleveland Tin Limited.

Jackson, P., Changkakoti, A., Krouse, H.R. and Gray, J., 2000. The origin of the greisen fluids of the Foleys zone, Cleveland tin deposit, Tasmania, Australia *in Economic Geology volume* 95, pages 227-236.

Leaman, D.E. and Richardson, R.G., 1989. The granites of west and north-west Tasmania – a geophysical interpretation. Geological Survey Bulletin 66, Tasmania Department of Mines.

Leaman, D.E. and Richardson, R.G., 2003. A geophysical model of the major Tasmanian granitoids. Tasmanian Geological Survey Record 2003/11, Mineral Resources Tasmania.

McKeown, M.V., 2011. Re-sampling and re-assaying of Cleveland drill core. Memorandum from Mick McKeown to Mike Adams, 12 December, 2011. Mining One Pty Ltd.

Ransom, D.M. and Hunt, F.L., 1975. Cleveland tin mine in Knight, C.L. (editor), 1975, Economic Geology of Australia and Papua New Guinea, Monograph Series No. 5, the Australasian Institute of Mining and Metallurgy.

Stribley, D.J., Tapp, G.C. and Meik, S.S, 1984. Cleveland tailings re-treatment, pilot plant and laboratory flotation results, February 1984. Unpublished report by Aberfoyle Central Metallurgical Services.

Table 10Historical summary of exploration and mining at the Cleveland mine.

1898	S.C. Coundon, Prospector	Pegged leases over gossan for possibility of silver and lead.
1900	Harcourt Smith Government Geologist Department of Mines, Tasmania	Identified cassiterite in gossan.
1908 - 1917	Cleveland Tin Mining Company N.L.	Mined oxidised ore for tin.
1923	A.M. Reid Government Geologist Department of Mines, Tasmania	Recognised fissure lodes and replacement lodes.
1935-1937	Mount Bischoff Tin Mining Company	Small scale underground exploration: Battery, Smithy, Lucks, Khaki, Hall's, Henry's recognised.
1937	Q.J. Henderson Government Geologist Department of Mines, Tasmania	Described the work undertaken by the Mount Bischoff Tin mining Company.
1945	S.W. Carey Government Geologist Department of Mines, Tasmania	Reported all deposits were of replacement style.
1952-1954	T.D. Hughes Government Geologist Department of Mines, Tasmania	Postulated that the ore would continue in depth. Recommended cutting of a grid and geophysical surveys.
1953-1954	O. Keunecke and K.H. Tate Bureau of Mineral Resources Commonwealth of Australia	Concluded self-potential and magnetic surveys anomalies suggested that sulphide mineralisation may extend beyond the old workings.
1961-1965	Aberfoyle Tin Development Partnership	Explored the area with diamond drilling and proved up sufficient resources for mining.
1968-1986	Cleveland Tin N.L. and Aberfoyle Limited	Mined tin and copper ore.
2007	Lynch Mining Pty Ltd	Drilled 30 aircore holes, for a total length of 561m, to test tailings dams.
2013	Rockwell Minerals Limited	Acquired high resolution topographic data using LiDAR Drilled 32 aircore holes, for a total length of 612m, to test tailings dams and to obtain samples for metallurgical testing.

Table 11Coordinates of diamond drill holes at Cleveland.

		-	-		(see above)	·
Hole No	North	East	Elevation	Length	Azimuth	Dip
C0001	4908.8	3115.0	1342.3	39.8	72.5	-60.0
C0002	4904.1	3137.0	1341.4	22.0	221.6	-20.0
C0003	4906.9	3137.8	1341.4	42.4	286.1	-20.0
C0004	4904.5	3137.0	1342.0	29.6	234.1	-45.0
C0005	4905.6	3132.3	1342.0	42.4	225.7	-64.0
C0006	4974.7	2981.3	1429.8	43.3	267.7	-45.0
C0007	4976.0	2982.3	1429.8	32.3	267.7	-20.0
C0008	4976.6	2982.5	1429.8	32.9	312.7	-20.0
C0009	5195.5	3012.6	1427.3	36.0	282.7	-30.0
C0010	5194.4	3013.2	1429.8	36.9	232.7	-20.0
C0011	5170.4	2987.2	1428.2	38.6	165.7	-12.0
C0012	5187.2	2991.7	1427.6	36.0	163.7	-60.0
C0013	5298.7	2989.2	1453.5	46.0	55.7	-45.0
C0014	5297.0	2987.4	1453.5	66.8	232.7	-20.0
C0015	5291.3	2958.0	1470.3	11.7	137.7	-35.0
C0016	5291.6	2956.9	1470.3	44.8	161.7	-65.0
C0017	5300.2	2988.2	1452.6	50.6	117.7	-45.0
C0018	5165.3	3012.9	1444.4	97.2	222.7	-50.0
C0019	5208.6	2940.9	1450.5	30.5	282.7	-45.0
C0020	5294.8	2970.5	1453.2	58.8	233.7	-45.0
C0021	5189.8	2981.9	1428.2	18.6	279.7	2.0
C0022	5182.1	2989.3	1428.6	15.6	269.7	2.0
C0023	5195.7	3012.8	1426.7	56.4	-31.9	-20.0
C0024	5062.4	3035.1	1438.3	99.1	294.1	-60.0
C0025	5195.7	3012.8	1427.3	57.3	-34.3	-45.0
C0026	5292.7	2945.6	1453.5	57.3	207.7	-75.0
C0027	5062.1	3035.8	1438.3	288.3	294.1	-75.0
C0028	5297.8	2987.9	1453.2	155.1	234.7	-50.0
C0029	5238.7	2907.4	1512.4	136.9	51.1	-82.0
C0030	5062.2	3038.2	1439.0	61.7	292.7	-30.0
C0031	5104.8	3104.5	1402.6	186.8	276.7	-37.0
C0032	5292.5	2955.3	1470.3	25.3	247.7	-30.0
C0033	5361.7	3047.2	1408.1	72.2	269.7	-40.0
C0034	5361.8	3049.6	1408.1	71.0	89.7	-65.0
C0035	5157.6	3051.1	1429.8	133.5	269.7	-60.0
C0036	5238.4	3004.5	1447.1	107.6	269.7	-45.0
C0037	5238.0	3048.5	1416.1	140.5	269.7	-40.0
C0038	5271.6	3048.8	1419.0	143.6	269.7	-40.0
C0039	5239.3	3048.7	1416.1	139.1	269.7	-65.0
C0040	5361.7	3047.7	1407.5	111.3	269.7	-65.0
C0041	5157.3	3125.1	1367.0	312.1	269.7	-60.0

All coordinates and azimuths use Hall's Grid (see above)

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0042	5310.5	3061.2	1392.9	128.9	269.7	-45.0
C0043	5309.9	3060.1	1393.5	108.0	269.7	-15.0
C0044	5408.3	3073.6	1393.5	108.8	269.7	-45.0
C0045	5408.4	3072.8	1394.7	61.3	269.7	-5.0
C0046	5457.0	3085.0	1393.2	114.3	269.7	-46.0
C0047	5255.8	2995.6	1398.1	10.8	89.7	2.0
C0048	5220.0	2991.9	1398.1	10.4	89.7	2.0
C0049	5236.3	2974.6	1398.1	29.6	269.7	2.0
C0050	5144.3	2949.1	1399.0	11.0	89.7	2.0
C0051	5136.3	2981.1	1399.6	10.6	89.7	2.0
C0052	5291.4	2995.8	1398.4	53.6	269.7	2.0
C0053	5291.0	2999.9	1398.4	18.6	89.7	2.0
C0054	5091.5	2990.1	1399.6	18.6	89.7	2.0
C0055	5335.5	3003.9	1399.9	28.4	89.7	2.0
C0056	5335.4	3000.2	1399.9	30.8	269.7	2.0
C0057	5049.3	3005.4	1399.9	27.1	89.7	2.0
C0058	5114.0	2993.2	1398.1	21.3	269.7	-55.0
C0059	5154.1	2974.4	1399.3	31.4	269.7	2.0
C0060	4913.2	3172.8	1337.4	153.5	247.7	-50.0
C0061	5075.1	3188.7	1349.3	292.2	269.7	-40.0
C0062	5197.5	2996.7	1398.7	43.9	89.7	2.0
C0063	4912.6	3171.7	1337.4	108.1	247.7	-38.0
C0064	5155.6	2994.5	1399.3	33.8	89.7	2.0
C0065	5114.2	3015.6	1399.3	17.7	89.7	2.0
C0066	5068.5	3027.9	1400.2	18.3	89.7	2.0
C0067	5275.8	3016.6	1399.3	35.8	89.7	2.0
C0068	5018.1	3162.3	1442.3	186.5	247.7	-45.0
C0069	5030.6	3230.0	1342.0	184.2	247.7	-50.0
C0070	5075.1	3189.6	1349.3	247.8	269.7	-60.0
C0071	5197.4	2981.2	1398.7	43.7	269.7	2.0
C0072	5382.6	3029.9	1399.6	37.5	89.7	2.0
C0073	5382.3	3026.0	1399.6	12.2	269.7	2.0
C0074	5405.8	3031.4	1399.9	34.7	89.7	2.0
C0075	5405.6	3026.7	1399.9	6.1	269.7	2.0
C0076	5309.4	3016.5	1399.3	40.5	89.7	0.0
C0077	4983.5	3178.6	1342.0	172.9	247.7	-38.0
C0078	5017.7	3161.4	1342.3	183.5	247.7	-35.0
C0079	5076.0	3129.4	1386.5	207.0	269.7	-45.0
C0080	5273.6	2988.9	1399.0	22.9	89.7	2.0
C0081	5308.7	2995.3	1399.3	18.3	91.7	2.0
C0082	5111.7	2990.7	1399.3	3.7	89.7	2.0
C0083	5152.5	2977.1	1399.3	16.8	89.7	2.0
C0084	5195.3	2983.9	1398.7	10.7	89.7	2.0
C0085	5017.6	3163.1	1342.3	173.3	269.7	-45.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0086	5070.8	2998.2	1399.9	18.3	89.7	2.0
C0087A	5018.6	3007.8	1400.2	32.0	89.7	2.0
C0087B	5018.6	3007.8	1400.5	54.0	89.7	2.0
C0088	5236.6	3114.0	1367.0	154.2	269.7	-40.0
C0089	5018.1	3162.7	1342.3	252.4	269.7	-65.0
C0090	5236.6	3114.9	1367.0	169.8	269.7	-65.0
C0091	5018.5	3004.1	1400.5	60.9	269.7	2.0
C0092	5034.1	3008.1	1400.2	44.2	89.7	2.0
C0093	5000.1	3011.0	1401.4	46.7	89.7	2.0
C0094	5358.1	3009.3	1399.6	20.4	89.7	2.0
C0095	5232.8	2993.8	1398.4	7.4	89.7	2.0
C0096	5359.1	3079.3	1386.8	118.3	269.7	-60.0
C0097	4863.7	3205.9	1337.7	196.9	247.7	-40.0
C0098	4863.9	3206.1	1337.7	243.6	247.7	-60.0
C0099	5255.2	2995.8	1398.4	27.8	89.7	2.0
C0100	5169.1	3048.1	1426.7	70.3	-42.3	-90.0
C0101	5067.9	2976.9	1400.2	34.1	269.7	2.0
C0102	5118.7	2983.9	1412.1	63.9	269.7	5.0
C0103	5180.9	2987.9	1411.8	56.3	269.7	3.0
C0104	5071.5	3041.6	1442.6	131.2	269.7	-5.0
C0105	5117.6	2993.5	1412.1	19.2	89.7	3.0
C0106	5084.8	3004.1	1412.1	15.5	89.7	3.0
C0107	5065.9	3009.6	1411.8	18.3	89.7	3.0
C0108	5235.6	2993.8	1412.1	14.0	89.7	3.0
C0109	5199.6	3002.2	1446.5	84.7	269.7	-20.0
C0110	5223.2	2995.1	1411.8	36.1	89.7	4.0
C0111	5180.3	2995.9	1412.1	18.3	89.7	3.0
C0112	5275.6	3001.9	1412.1	30.8	89.7	3.0
C0113	5238.4	3004.5	1447.8	85.7	269.7	-20.0
C0114	5081.0	2997.6	1412.1	80.4	269.7	2.0
C0115	5287.4	3003.1	1451.1	75.1	254.7	-23.0
C0116	5341.7	3013.5	1412.7	18.6	89.7	2.0
C0117	5323.2	3008.1	1412.7	2.5	89.7	2.0
C0118	5236.4	2987.3	1412.7	64.0	269.7	2.0
C0119	5313.3	2999.4	1451.7	49.7	269.7	-40.0
C0120	5332.9	3013.3	1413.0	15.1	89.7	2.0
C0121	5312.6	2994.6	1413.0	35.5	269.7	2.0
C0122	5272.9	2995.8	1412.7	78.7	249.2	2.0
C0123	5165.6	2987.0	1453.2	96.9	259.7	-30.0
C0124	5340.8	3001.1	1412.7	9.1	269.7	2.0
C0125	5107.7	3057.4	1442.0	146.6	269.7	-6.0
C0126	5020.3	3003.8	1442.9	84.7	269.7	-17.0
C0127	5179.9	2950.6	1399.3	19.3	269.7	2.0
C0128	5221.4	2948.2	1399.6	25.0	269.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0129	5198.8	3002.6	1379.9	40.1	89.7	1.0
C0130	5180.2	3002.6	1379.9	33.6	89.7	1.0
C0131	5047.9	3004.2	1380.4	34.8	89.7	2.0
C0132	5047.9	2999.7	1380.4	5.5	269.7	2.0
C0133	5070.8	2997.8	1380.4	6.7	269.7	2.0
C0134	5093.9	2994.1	1380.4	6.9	269.7	2.0
C0135	5117.3	2987.7	1380.1	6.8	269.7	2.0
C0136	5117.2	2993.1	1380.1	6.9	89.7	2.0
C0137	5201.5	2985.2	1380.4	40.6	269.7	1.0
C0138	5221.3	3001.5	1380.1	10.4	89.7	2.0
C0139	5221.2	2997.0	1380.1	10.6	269.7	2.0
C0140	5239.5	3002.6	1380.4	13.8	89.7	2.0
C0141	5239.8	2997.8	1380.4	10.2	269.7	2.0
C0142	5276.5	3002.0	1380.4	41.2	89.7	2.0
C0143	5275.0	2996.7	1380.4	10.1	269.7	2.0
C0144	5308.5	2998.8	1380.7	16.2	269.7	3.0
C0145	5258.3	3003.3	1380.4	9.8	89.7	1.0
C0146	5258.3	2998.7	1380.4	13.7	269.7	2.0
C0147	5156.7	2974.5	1379.8	47.6	269.7	2.0
C0148	5155.0	2974.0	1379.8	13.4	258.7	2.0
C0149	5009.1	3006.9	1380.7	24.4	89.7	2.0
C0150	5117.1	3003.9	1380.4	17.7	89.7	2.0
C0151	5070.8	3011.8	1380.4	16.9	89.7	2.0
C0152	5179.8	3025.2	1360.5	15.5	89.7	2.0
C0153	5180.0	3021.3	1360.5	43.3	269.7	2.0
C0154	5183.2	3025.8	1360.8	26.2	55.7	2.0
C0155	5309.5	3010.2	1381.3	48.2	89.7	2.0
C0156	5243.7	2947.3	1412.4	7.1	89.7	2.0
C0157	5198.8	2943.7	1412.1	16.8	269.7	2.0
C0158	5096.3	3010.4	1361.2	36.0	89.7	2.0
C0159	5117.2	3007.1	1361.1	31.8	89.7	2.0
C0160	5120.7	3019.6	1361.2	27.9	89.7	2.0
C0161	5068.1	3005.6	1362.1	27.1	116.7	2.0
C0162	5218.6	3002.2	1361.8	23.8	269.7	2.0
C0163	5218.6	3002.2	1361.8	20.9	269.7	-40.0
C0164	5239.8	3010.6	1361.8	46.9	89.7	2.0
C0165	5245.4	2996.8	1361.2	35.9	269.7	2.0
C0166	5138.7	3003.6	1344.7	27.6	89.7	2.0
C0167	5291.5	2994.9	1362.1	15.5	269.7	2.0
C0168	5276.5	3005.2	1361.8	42.7	89.7	2.0
C0169	5159.2	2986.1	1344.1	304.4	89.7	-60.0
C0170	5201.2	3037.0	1360.0	22.1	49.7	2.0
C0173	5117.2	3011.2	1345.0	33.2	89.7	2.0
C0174	5117.2	3006.3	1345.0	36.9	269.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0175	5138.7	2999.9	1344.7	42.7	269.7	2.0
C0178	5071.0	2994.3	1380.4	63.8	269.7	2.0
C0179	5117.5	2986.6	1380.1	60.3	269.7	2.0
C0180	5158.8	2987.6	1344.1	214.6	89.7	-35.0
C0181	5239.9	2995.7	1380.4	51.1	269.7	2.0
C0182	5070.4	3007.3	1344.4	215.2	89.7	-60.0
C0183	5070.6	3007.1	1344.4	122.4	89.7	-35.0
C0184	5094.3	2999.5	1362.1	53.8	269.7	2.0
C0185	5291.6	3000.5	1362.1	36.4	89.7	2.0
C0186	5291.5	2994.9	1362.1	49.0	269.7	2.0
C0187	5036.6	2826.9	1359.7	42.1	269.7	2.0
C0188	5070.4	3005.5	1344.4	366.4	89.7	-75.0
C0189	5138.5	2985.3	1362.1	69.5	269.7	2.0
C0190	5114.9	2987.8	1362.1	65.8	258.7	2.0
C0191	5105.8	3033.1	1362.1	19.6	269.7	2.0
C0192	5071.2	3047.6	1362.1	29.6	269.7	2.0
C0193	5047.8	3051.3	1362.4	10.7	269.7	2.0
C0194	5094.1	3008.0	1345.3	53.4	89.7	1.0
C0195	5276.5	3009.4	1346.3	25.6	89.7	2.0
C0196	5239.3	3008.2	1344.7	30.5	89.7	2.0
C0197	5309.5	3007.0	1345.8	91.6	89.7	-30.0
C0198	5117.3	2987.3	1343.8	49.5	269.7	-30.0
C0199	5309.6	3005.8	1345.7	128.1	89.7	-55.0
C0200	5309.8	3005.1	1345.6	442.3	89.7	-70.0
C0201	5120.3	3001.4	1331.3	8.4	189.7	2.0
C0202	5309.8	3005.1	1362.4	29.9	89.7	2.0
C0203	5309.9	3001.2	1360.9	15.7	269.7	2.0
C0204	5220.9	3009.7	1344.1	30.6	89.7	2.0
C0205	5196.3	3008.5	1344.4	9.9	269.7	2.0
C0206	5257.7	3002.2	1344.4	30.9	89.7	2.0
C0207	5220.6	3002.1	1344.1	16.8	269.7	2.0
C0208	5220.7	3017.2	1361.5	12.8	89.7	2.0
C0209A	5209.3	2958.8	1399.6	9.2	89.7	2.0
C0209X	5209.4	2938.1	1399.6	12.7	269.7	2.0
C0210	5199.8	3021.4	1326.1	17.8	89.7	2.0
C0211	5220.8	3024.6	1330.1	32.3	89.7	2.0
C0212	4759.8	2564.2	1326.1	27.8	89.7	2.0
C0213	5198.1	3011.0	1330.4	21.8	269.7	2.0
C0214	5198.3	2949.0	1380.1	25.6	89.7	2.0
C0215	5239.1	3016.2	1330.4	37.2	89.7	2.0
C0216	5220.7	2931.1	1412.5	17.2	269.7	2.0
C0217	5054.0	3009.3	1345.0	48.5	89.7	2.0
C0218	5291.1	2970.1	1413.3	15.6	269.7	2.0
C0219	5224.4	2978.0	1413.0	19.9	269.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0220	5032.7	2999.9	1345.3	9.1	269.7	2.0
C0221	5033.1	3011.1	1345.3	12.9	89.7	2.0
C0222	5274.6	2960.0	1413.3	15.2	227.7	2.0
C0223	5071.2	3009.0	1345.4	5.6	89.7	2.0
C0224	5017.9	3008.9	1345.5	55.8	89.7	2.0
C0225	5179.7	2950.8	1398.1	7.3	269.7	2.0
C0226	5179.7	2950.8	1398.1	9.7	269.7	2.0
C0227	5071.2	3009.0	1345.4	17.3	89.7	2.0
C0228	5071.1	3010.3	1328.0	52.6	89.7	2.0
C0229	5334.9	3016.4	1362.1	34.6	89.7	2.0
C0230	5311.1	2987.7	1346.6	28.7	89.7	2.0
C0231	5032.8	3052.1	1361.5	26.6	269.7	2.0
C0232	5123.9	3007.6	1326.4	30.5	89.7	2.0
C0233	5344.4	3012.3	1346.6	35.7	89.7	2.0
C0234	5047.7	3007.3	1326.4	52.4	89.7	2.0
C0235	5301.0	2971.9	1399.6	15.9	269.7	2.0
C0236	5017.3	3011.9	1361.8	22.2	89.7	0.0
C0237	5015.5	3045.2	1360.3	12.6	89.7	2.0
C0238	4962.3	3012.0	1362.7	11.8	89.7	2.0
C0239	5032.7	3005.2	1361.5	19.8	89.7	2.0
C0240	5239.3	2999.1	1345.6	36.5	269.7	2.0
C0241	5257.7	2998.0	1346.0	43.6	269.7	2.0
C0242	5168.4	2946.6	1361.8	31.4	222.7	2.0
C0243	5179.8	2955.9	1361.6	22.1	269.7	2.0
C0244	5198.5	2963.7	1360.7	8.7	269.7	2.0
C0245	5220.5	2966.7	1360.9	21.3	269.7	0.0
C0246	5275.9	2999.6	1346.3	37.9	269.7	2.0
C0247	5291.4	3000.7	1346.3	41.7	269.7	2.0
C0248	5571.1	3232.3	1362.1	29.9	35.7	2.0
C0249	5368.3	3008.7	1362.7	15.9	269.7	2.0
C0250	5117.6	2988.7	1343.8	69.5	267.7	2.0
C0251	5180.1	3003.9	1344.1	48.6	269.7	2.0
C0252	5222.8	3004.6	1345.3	36.5	269.7	2.0
C0253	5094.2	3009.0	1344.2	61.4	89.7	-20.0
C0254	5238.5	3000.1	1325.8	623.0	89.7	-70.0
C0255	5151.7	3003.8	1380.1	46.9	140.7	2.0
C0256	5137.7	2983.2	1344.2	58.5	271.7	2.0
C0257	5239.3	2925.8	1412.4	76.2	269.7	2.0
C0258	5273.8	3052.6	1325.8	160.2	89.7	-50.0
C0259	5032.8	3007.6	1326.4	73.5	89.7	2.0
C0260	5000.7	3007.2	1344.8	329.2	89.7	-60.0
C0261	5000.0	3007.2	1344.8	548.9	89.7	-72.0
C0262	5092.2	3006.8	1326.4	58.2	89.7	2.0
C0263	4962.4	3008.2	1362.7	117.4	269.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0264	4998.9	3003.9	1362.4	114.3	269.7	2.0
C0265	4944.0	3009.7	1363.0	110.1	269.7	2.0
C0266	4944.0	3014.2	1363.0	76.8	89.7	2.0
C0267	5094.2	2996.3	1344.7	89.6	255.7	2.0
C0268	5047.9	2998.9	1344.2	93.6	269.7	2.0
C0269	4999.4	3047.9	1414.8	156.2	269.7	5.0
C0270	5220.8	3006.4	1325.5	54.4	269.7	2.0
C0271	5220.8	3006.9	1326.1	60.4	269.7	-30.0
C0272	5198.4	3010.8	1326.1	45.9	269.7	2.0
C0273	5180.0	3012.3	1326.1	53.6	269.7	2.0
C0274	4829.8	3289.4	1365.8	457.8	247.7	-50.0
C0275	4980.2	3037.7	1412.4	146.6	269.7	2.0
C0276	5239.3	2998.3	1326.1	38.4	269.7	2.0
C0277	5257.7	3010.4	1327.1	37.2	269.7	2.0
C0278	5198.3	3010.7	1344.7	52.7	269.7	2.0
C0279	5198.4	3019.8	1344.7	34.1	89.7	2.0
C0280	5180.0	3020.6	1344.7	34.9	89.7	2.0
C0281	4926.1	3004.5	1346.3	123.4	269.7	2.0
C0282	4980.2	3037.7	1412.4	145.1	269.7	-13.0
C0283	4926.2	3008.2	1345.6	92.3	89.7	2.0
C0284	4943.6	3014.8	1406.3	118.4	269.7	2.0
C0285	5309.4	2998.8	1345.0	32.6	269.7	2.0
C0286	5360.6	3010.7	1345.6	38.4	89.7	2.0
C0287	4998.9	3008.4	1362.4	6.1	89.7	2.0
C0288	4990.2	3031.9	1363.9	30.3	132.7	2.0
C0289	5335.2	3010.4	1329.5	29.6	89.7	2.0
C0290	5310.0	3011.8	1328.0	34.7	89.7	2.0
C0291	5297.0	3018.2	1326.8	28.4	89.7	2.0
C0292	5276.2	3008.4	1326.8	33.3	89.7	2.0
C0293	5391.2	3026.6	1363.3	48.8	89.7	2.0
C0294	5331.7	2943.1	1326.1	22.3	89.7	2.0
C0295	5383.3	3023.0	1347.5	34.8	89.7	2.0
C0296	5322.3	3009.8	1346.9	33.9	89.7	2.0
C0297	4998.8	3009.2	1345.6	22.9	89.7	2.0
C0298	5071.0	3022.0	1345.3	32.6	89.7	2.0
C0300	5158.0	2977.8	1326.7	22.2	269.7	2.0
C0301	5138.2	2983.7	1344.9	28.5	300.7	2.0
C0302	4961.9	2994.8	1329.5	12.8	89.7	2.0
C0303	4982.0	3003.0	1329.2	13.6	89.7	2.0
C0304	5347.9	3024.4	1326.8	30.2	89.7	2.0
C0305	4907.4	3007.5	1346.3	83.8	269.7	2.0
C0306	4905.6	3001.7	1402.6	86.6	269.7	2.0
C0307	4909.2	3005.9	1346.3	84.4	254.7	2.0
C0308	4980.5	3005.8	1345.6	99.7	89.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0309	4896.8	2999.4	1401.7	72.2	247.7	2.0
C0310	4744.7	2954.0	1405.5	437.4	68.0	-56.0
C0311	4888.7	2999.0	1399.9	76.2	269.7	-33.0
C0312	4960.1	3007.1	1346.0	49.4	79.7	0.2
C0313	4962.5	3003.2	1346.2	83.5	269.7	0.2
C0314	4980.4	3002.1	1346.0	85.0	269.7	0.2
C0315	5020.4	3003.5	1345.8	28.2	269.7	0.2
C0316	5094.0	2996.5	1345.1	74.1	269.7	2.0
C0317	5094.2	2996.3	1345.0	60.7	269.7	-30.0
C0318	5020.7	3003.8	1443.2	70.7	269.7	11.0
C0319	4798.5	3211.6	1338.6	274.9	247.7	-47.0
C0320	5138.3	2985.9	1343.5	35.7	269.7	-30.0
C0321	4949.2	2951.9	1441.6	29.9	269.7	2.0
C0322	5071.1	2992.2	1328.3	69.5	269.7	2.0
C0323	4957.9	2960.7	1441.4	8.2	265.7	-15.0
C0324	4942.9	2957.3	1439.8	10.1	274.2	-10.0
C0325	5032.1	3005.3	1328.7	62.2	89.7	2.0
C0326	4887.4	2835.9	1405.4	27.7	67.7	12.0
C0327	5000.0	3025.5	1327.9	55.2	89.7	2.0
C0328	4907.3	3037.7	1329.5	119.9	269.7	2.0
C0329	5138.7	3012.2	1307.2	55.8	269.7	2.0
C0330	4852.6	3004.7	1398.7	71.6	269.7	-5.0
C0331	4852.6	3004.7	1398.4	73.8	269.7	-14.0
C0332	5073.1	3009.9	1308.0	24.4	86.7	2.0
C0333	4999.7	3019.1	1326.9	33.6	269.7	-36.0
C0334	5032.9	3011.3	1327.0	32.0	269.7	-50.0
C0335	4840.9	3014.0	1398.4	85.0	269.7	-31.0
C0336	4925.6	3037.9	1329.8	52.6	269.7	-18.0
C0337	5284.0	3013.7	1310.3	39.6	82.4	2.0
C0338	5090.7	3003.5	1309.7	50.9	265.7	2.0
C0339	4813.7	3082.3	1335.4	155.5	269.7	-8.0
C0340	5070.7	2993.9	1327.0	43.7	269.7	-27.0
C0342	5048.5	3000.0	1328.6	76.8	269.7	2.0
C0343	5114.9	3010.5	1309.4	53.3	269.7	2.0
C0344	5115.0	3021.6	1309.5	45.1	89.7	2.0
C0345	5384.0	3019.8	1329.5	10.1	89.7	-55.0
C0346	5384.0	3019.4	1329.8	61.0	89.7	-38.0
C0348	5020.1	2997.3	1328.0	33.2	89.6	-41.5
C0349	4638.0	2937.7	1374.3	546.8	67.7	-60.0
C0350	5384.0	3020.0	1331.0	34.0	89.7	2.0
C0351	5198.7	3024.5	1309.0	30.5	89.7	2.0
C0352	5115.4	3012.7	1309.4	18.6	258.7	2.0
C0353	5138.6	3029.7	1309.4	18.3	89.7	2.0
C0354	4998.8	2996.9	1329.2	10.7	89.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0355	4945.2	3053.5	1346.6	12.5	237.7	2.0
C0356	5221.8	3003.9	1309.7	26.1	269.7	2.0
C0357	4943.6	3055.8	1346.6	18.6	184.7	2.0
C0358	5177.6	3029.6	1309.1	12.5	93.7	2.0
C0359	5178.5	3029.7	1309.1	23.8	73.7	2.0
C0360	5149.5	3014.1	1327.1	1.5	89.7	2.0
C0361	5322.3	3019.0	1311.0	32.5	89.7	2.0
C0362	5335.2	3018.2	1311.2	36.0	89.7	2.0
C0363	4981.5	3003.0	1328.9	32.6	91.7	-30.0
C0364	5350.2	3016.5	1311.8	40.8	89.7	2.0
C0365	4944.8	2997.8	1329.5	56.1	86.2	-17.0
C0366	5240.0	3000.3	1310.0	35.4	269.7	2.0
C0367	4906.6	3003.3	1330.1	48.8	88.0	-21.0
C0368	4662.5	2681.9	1330.1	73.2	269.2	2.0
C0370	4980.4	2994.5	1330.0	65.5	269.7	2.0
C0371	5045.1	2997.6	1309.8	70.1	269.7	2.0
C0372	4872.0	2968.8	1331.6	80.8	233.7	2.0
C0373	5179.9	2989.5	1309.1	96.0	89.7	-20.0
C0374	5021.9	2998.2	1328.9	71.0	266.7	2.0
C0375	5218.5	2989.6	1308.8	109.4	89.7	-27.0
C0376	5035.9	2997.8	1328.6	76.2	276.7	2.0
C0377	5029.3	3010.8	1310.1	72.9	89.7	2.0
C0378	5363.2	3067.3	1312.6	33.5	269.7	2.0
C0379	4547.0	2966.1	1356.2	464.8	67.7	-60.0
C0380	5273.7	2998.1	1328.9	4.6	89.7	2.0
C0381	5266.8	3001.7	1328.3	3.1	89.7	2.0
C0382	5248.3	3003.9	1328.0	4.9	89.7	2.0
C0383	4999.2	3005.9	1309.5	12.5	90.9	2.0
C0387	5369.7	3017.7	1312.0	9.5	89.7	2.0
C0388	5358.6	2940.5	1328.6	7.6	269.7	2.0
C0389	5361.0	3010.0	1311.0	13.7	269.7	2.0
C0390	5067.8	2940.1	1310.9	21.0	106.7	2.0
C0391	5083.2	2957.7	1309.8	12.5	99.7	2.0
C0392	5220.6	3018.7	1309.7	11.9	89.7	2.0
C0393	5239.1	3013.5	1309.8	18.3	89.7	2.0
C0394	5388.6	3070.0	1311.5	13.7	269.7	2.0
C0395	5277.0	3025.3	1311.4	21.9	82.4	2.0
C0396	5258.6	3031.8	1311.1	24.4	89.7	2.0
C0397	5258.3	3028.2	1311.1	20.2	265.7	2.0
C0398	5239.3	3039.3	1310.0	21.3	89.7	2.0
C0399	5220.6	3046.1	1309.4	18.3	89.7	2.0
C0400	4914.7	3168.5	1338.0	360.0	269.7	-40.0
C0401	4814.3	3088.0	1353.5	242.0	247.7	-55.0
C0402	4597.2	2878.9	1338.0	403.0	67.7	-40.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0403	4887.4	3103.6	1359.8	213.4	247.7	-40.0
C0404	4887.4	3103.6	1359.8	214.7	247.7	-50.0
C0405	4887.4	3103.6	1359.8	252.7	247.7	-60.0
C0406	4814.6	3088.8	1355.4	330.7	250.1	-65.0
C0407	4874.5	3034.4	1312.6	98.2	269.7	2.0
C0408	5383.0	3049.1	1312.4	103.6	292.7	2.0
C0411	5310.0	3001.1	1328.0	11.0	269.7	2.0
C0413	5078.2	2941.1	1345.3	8.8	178.7	-40.0
C0414	5078.5	2940.1	1346.3	18.3	210.9	2.0
C0415A	5082.1	2937.7	1346.3	11.0	248.1	2.0
C0415B	5322.8	3013.0	1311.4	9.1	249.3	2.0
C0416	5261.2	3047.3	1311.4	7.3	270.8	10.0
C0417	5300.9	3012.5	1311.1	21.9	272.2	10.0
C0419	5158.0	3012.3	1289.2	20.7	269.8	2.0
C0420	5212.3	3043.6	1309.5	26.2	117.2	2.0
C0421	5239.0	3039.3	1310.0	18.9	98.3	-1.0
C0423	4897.1	2950.6	1417.6	11.3	80.5	2.0
C0424	4930.5	2918.3	1402.5	21.3	83.2	2.0
C0425	4970.2	2913.8	1402.9	17.7	93.3	2.0
C0426	4961.9	2909.2	1403.0	19.5	91.2	2.0
C0427	4930.9	2911.0	1403.0	6.1	269.7	2.0
C0428	4943.0	2905.9	1403.0	7.3	269.7	2.0
C0429	4893.1	2940.1	1402.1	5.2	89.7	2.0
C0430	4884.1	2941.0	1402.1	7.6	89.7	2.0
C0431	4979.3	2908.8	1403.0	12.2	269.7	2.0
C0433	5179.9	3042.8	1308.0	26.2	88.2	2.0
C0434	5221.3	3017.4	1289.7	15.9	68.0	-6.2
C0435	5226.3	3015.4	1289.7	21.3	26.8	0.7
C0437	5082.0	2937.6	1346.3	21.3	245.3	2.0
C0438	5080.1	2943.9	1346.1	22.9	66.0	-19.0
C0439	5144.2	3038.6	1289.1	25.3	89.9	2.0
C0440	4944.2	3031.6	1310.9	94.5	265.7	-24.0
C0441	5269.8	3041.6	1310.3	39.6	271.5	-38.0
C0442	5186.6	3004.4	1289.0	75.6	88.5	-32.0
C0443	5291.4	3017.7	1310.9	31.1	266.4	-48.0
C0444	5257.5	3032.1	1310.3	43.6	95.4	-35.0
C0445	5162.5	3070.1	1289.6	27.4	89.5	2.0
C0446	5119.4	2990.1	1289.4	80.5	73.1	-15.0
C0447	5229.5	3044.1	1309.1	36.6	86.6	-45.0
C0448	4951.0	3035.0	1310.6	62.8	307.8	-19.0
C0449	5239.7	3149.6	1297.5	177.8	269.7	-42.0
C0450	5383.6	3058.2	1312.7	76.2	105.6	3.0
C0451	5117.1	3007.0	1343.8	24.4	279.5	-35.0
C0452	4932.4	2995.3	1311.4	56.1	270.1	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0453	5122.7	3003.7	1343.8	25.9	302.9	-25.0
C0454	4917.9	3001.3	1311.4	79.6	245.1	2.0
C0455	5095.1	3004.1	1308.8	36.6	268.0	-22.0
C0456	4917.9	3001.3	1310.6	70.4	248.8	-22.0
C0457	4817.3	2839.9	1366.1	29.3	80.7	2.0
C0458	5115.0	3010.6	1308.9	39.6	269.8	-26.0
C0459	5073.1	3001.5	1308.9	52.7	270.3	-27.0
C0460	5275.9	3009.9	1309.5	54.3	90.2	-41.0
C0461	5360.5	3015.8	1310.9	58.8	90.1	-28.0
C0462	5093.7	3138.5	1351.4	68.9	2.2	-63.0
C0463	5335.2	3018.1	1310.9	56.1	88.4	-32.0
C0464	5045.1	2997.6	1309.2	55.2	263.3	-25.0
C0465	5385.1	3050.8	1312.3	36.0	-29.9	2.0
C0466	5361.0	3048.8	1312.0	54.9	269.7	-37.0
C0467	5276.4	3021.0	1291.4	24.4	269.6	2.0
C0468	5198.5	3052.8	1290.3	33.5	89.3	2.0
C0469	5220.8	3013.1	1290.7	21.6	270.1	0.0
C0470	5197.4	3025.2	1289.6	35.7	268.9	0.0
C0471	5197.4	3029.8	1289.6	9.8	89.9	1.2
C0472	5131.9	2991.0	1289.7	15.6	268.9	2.8
C0473	4887.7	3008.5	912.0	112.8	276.2	-45.0
C0474	5234.7	3143.8	1298.1	152.4	270.9	-15.0
C0475	5071.0	3025.8	1290.2	52.7	88.9	1.0
C0476	4887.7	3008.5	1399.3	86.9	276.2	-13.0
C0479	4832.0	3054.6	1312.3	312.1	269.7	2.0
C0480	5180.3	3031.5	1288.5	40.2	271.9	-20.0
C0481	5097.4	3032.6	1289.7	9.1	85.0	-11.3
C0482	5117.8	3025.9	1289.6	11.6	270.7	-0.2
C0483	5117.8	3031.3	1289.6	3.7	90.1	0.2
C0484	5118.3	2978.2	1290.2	10.4	267.4	1.0
C0485	5047.7	3013.1	1290.0	9.1	269.8	1.8
C0486	5145.6	3025.9	1289.4	42.7	280.9	-27.8
C0488	5049.3	3032.8	1438.0	133.2	269.7	-0.2
C0489	5118.0	3118.6	1269.8	145.7	269.7	-52.0
C0490	5234.8	3144.2	1297.3	159.0	295.8	-12.0
C0492	4872.0	2938.2	1401.5	15.0	89.7	0.0
C0493	5214.7	3048.7	1290.6	27.4	91.1	1.0
C0494	4944.0	3019.1	1399.9	131.7	272.3	-7.0
C0495	4943.9	3019.0	1312.2	132.0	269.7	11.3
C0496	5072.0	3001.5	1304.0	63.7	89.7	2.0
C0497	5049.3	3032.8	1438.0	128.0	269.7	7.0
C0498	5081.9	2992.3	1328.3	63.4	274.7	-7.0
C0499	5292.0	3006.8	1291.3	28.4	269.7	2.0
C0500	5197.6	3152.8	1294.7	150.7	269.7	-45.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0501	5047.8	3017.3	1290.9	26.2	88.7	0.3
C0503	4851.0	3129.4	1347.0	99.4	272.4	-11.0
C0504	5079.4	2946.7	1327.4	110.0	268.2	-5.0
C0505	4904.8	3012.9	1399.9	101.5	261.4	-15.0
C0506	4847.4	3069.0	1311.4	115.5	258.7	-11.0
C0507	5319.5	3021.9	1292.0	30.1	-41.3	2.0
C0508	5277.0	3025.5	1310.6	26.3	269.2	-25.0
C0509	5117.8	3118.6	1271.0	120.2	269.7	-13.5
C0511	4850.8	3129.7	1347.0	78.6	278.0	-33.0
C0512	5257.0	3009.0	1328.4	41.8	89.7	0.0
C0513	5046.9	3032.6	1436.0	46.6	270.5	-14.0
C0514	5098.4	2923.2	1346.6	103.0	269.7	15.0
C0515	4946.0	3041.4	1396.0	145.4	273.2	-13.0
C0516	4851.7	3004.0	1398.8	123.7	269.7	-62.0
C0517	5240.0	3055.5	1312.0	18.6	89.7	2.0
C0519	5117.6	3031.1	1290.2	54.9	89.7	2.0
C0520	4886.0	3139.9	1344.0	100.7	267.8	-11.0
C0521	5033.0	3026.7	1290.5	60.4	93.7	0.5
C0522	5310.0	3022.8	1291.8	23.8	269.7	0.0
C0523	5384.0	3053.8	1291.5	23.5	297.7	2.0
C0524	4927.0	2995.5	1311.0	61.0	269.7	-28.0
C0525	4817.5	2986.9	1398.8	50.2	268.5	-15.0
C0526	4833.9	3125.0	1344.1	7.9	269.7	-33.0
C0527	4944.4	2994.7	1311.2	74.9	263.7	1.8
C0528	4878.0	3033.4	1312.3	92.7	269.7	2.0
C0529	4833.9	3125.0	1344.1	71.9	270.9	-42.0
C0530	5200.0	3041.3	1253.7	21.3	269.7	2.0
C0531	4886.2	3139.9	1344.0	67.3	269.7	0.0
C0532	4979.0	2968.1	1441.0	99.8	271.7	-6.0
C0533	5374.0	3057.0	1291.4	7.9	27.7	2.0
C0534	4927.0	2995.5	1311.0	86.0	270.1	2.0
C0536	5018.0	2916.2	1422.9	14.9	269.7	2.0
C0537	5437.0	3045.3	1312.1	27.7	89.7	0.0
C0538	4927.0	3005.0	1311.0	48.2	89.7	-28.0
C0540	4833.9	3125.0	1344.1	262.4	270.9	-47.0
C0541	4823.0	3060.7	1311.7	25.3	90.0	2.0
C0543	4886.2	3139.9	1344.0	91.0	279.4	2.5
C0544	4872.0	3052.3	1310.5	21.3	269.7	-45.0
C0545	5336.0	3012.0	1290.0	15.9	317.7	2.0
C0546	5229.7	3039.8	1271.2	47.4	317.7	2.0
C0547	4852.0	3048.9	1311.3	21.3	89.7	-45.0
C0549	4810.7	3199.1	1334.1	174.7	261.2	-25.0
C0550	4909.0	3038.7	1312.5	26.8	89.7	30.0
C0551	4817.1	3060.4	1311.7	51.8	157.8	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0553	5229.7	3039.8	1271.2	48.2	268.3	2.0
C0554	4890.0	3051.3	1511.0	25.6	89.7	-45.0
C0556	5361.0	3046.0	1292.6	46.3	269.7	0.0
C0557	4890.0	3051.3	1311.5	25.6	89.7	2.0
C0558	4979.8	2968.7	1441.0	104.7	289.7	-6.0
C0559	4979.8	2968.7	1441.0	104.7	269.7	-43.0
C0560	4908.1	3123.2	1348.7	119.2	281.7	-40.0
C0562	5013.4	3013.4	1310.4	75.6	93.1	2.0
C0564	5336.0	3047.0	1289.0	20.2	269.7	2.0
C0565	5310.0	3145.7	1298.0	151.0	296.7	-12.0
C0566	5158.0	3156.3	1288.4	207.9	259.7	-72.0
C0567	4890.0	3051.0	1311.5	0.0	127.7	0.0
C0568	4982.0	2914.0	1347.8	40.2	303.7	0.0
C0570	5106.0	3000.5	1327.0	12.2	269.7	2.0
C0573	4908.1	3123.2	1348.0	75.2	269.7	2.0
C0574	5095.0	3025.3	1288.8	18.9	269.7	0.0
C0575	4852.0	3046.5	1311.8	20.1	269.7	2.0
C0578	4971.5	3001.2	1310.5	41.8	89.7	2.0
C0580	5114.5	3401.9	1460.0	489.5	276.7	-62.0
C0582	4885.3	3206.0	1339.0	92.7	280.7	-35.0
C0584	5033.0	3016.4	1290.5	18.3	269.7	2.0
C0585	4905.1	3136.7	1342.5	107.3	247.7	5.0
C0586	5258.0	3030.3	1292.4	43.0	89.7	2.0
C0587	5050.4	3360.3	1435.0	457.2	271.0	-67.0
C0590	5139.0	3053.1	1270.0	18.6	269.7	2.0
C0591	5240.0	3041.2	1291.8	38.7	89.7	2.0
C0593	5222.0	3041.2	1270.0	23.2	269.7	2.0
C0594	4872.0	2992.6	1400.8	86.6	269.7	-43.0
C0595	5240.0	3041.2	1292.0	24.7	89.7	30.0
C0597	5258.0	3035.5	1271.0	20.1	269.7	0.0
C0598	5277.0	3032.5	1272.0	18.6	269.7	2.0
C0602	5258.0	3030.5	1292.2	28.0	89.7	25.0
C0603	4945.0	2935.7	1347.3	17.7	89.7	2.0
C0604	5018.0	3016.2	1287.2	45.7	227.7	2.0
C0606	5240.0	3069.0	1271.5	18.7	-42.3	2.0
C0607	5095.0	3014.0	1307.3	78.8	89.7	2.0
C0608	5276.1	3146.3	1298.0	150.4	269.7	-67.0
C0609	5258.0	3036.4	1271.3	18.3	89.7	2.0
C0611	5434.7	3224.7	1454.2	289.7	269.7	-50.0
C0612	5114.5	3401.9	1460.0	488.0	275.7	-50.0
C0613	5277.0	3051.0	1272.0	12.2	89.7	0.0
C0614	5018.0	3046.5	1287.2	71.6	107.7	2.0
C0618	5049.0	3017.7	1291.2	64.9	89.7	2.0
C0619	5240.0	3028.3	1292.5	39.5	269.7	25.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0620	4757.8	3174.2	1329.6	153.6	248.7	-17.0
C0622	4872.0	2970.4	1400.5	70.1	269.7	-25.0
C0625	5095.0	3032.0	1288.6	46.6	269.7	2.0
C0627	4778.0	3180.5	1331.3	122.2	254.7	-27.0
C0628	4852.0	2939.4	1348.1	17.4	89.7	2.0
C0629	4832.0	2942.7	1348.5	7.9	89.7	2.0
C0630	5240.0	3037.0	1271.2	49.7	269.7	2.0
C0631	4983.6	3340.6	1397.4	489.8	269.7	-60.0
C0632	5095.0	3032.0	1288.8	53.3	89.7	-30.0
C0634	4903.2	3216.7	1349.7	140.8	247.7	-57.0
C0638	4778.0	3180.5	1331.3	152.6	254.7	-42.0
C0641	5292.0	3032.0	1290.5	43.6	89.7	-14.0
C0643	5077.8	3347.8	1449.0	460.3	266.7	-60.0
C0644	5200.0	3053.6	1289.6	30.5	89.7	-18.0
C0645	5239.7	3149.6	1297.5	146.9	269.7	-72.0
C0646	4801.8	3213.2	1337.8	237.7	247.7	-57.0
C0650	5200.0	3042.8	1288.1	26.2	269.7	-45.0
C0651	5222.0	3039.0	1291.5	43.9	269.7	20.0
C0653	5222.0	3047.4	1290.2	32.0	89.7	2.0
C0654	5222.0	3039.2	1290.5	9.8	269.7	18.5
C0656	5258.0	3027.1	1291.2	30.5	269.7	29.0
C0657	5258.0	3036.4	1272.0	35.7	89.7	27.0
C0658	4743.7	3203.2	1337.2	267.3	243.7	-62.0
C0659	5312.3	3412.8	1488.0	571.8	269.7	-65.0
C0660	5221.1	3143.0	1297.6	147.8	269.7	-36.0
C0661	4701.8	3292.0	1376.5	110.6	247.7	-61.0
C0662	4852.0	3031.5	1311.4	90.8	269.7	-28.0
C0663	5310.0	3044.0	1292.1	50.8	269.7	13.0
C0664	5258.0	3146.9	1297.7	147.9	269.7	-32.0
C0665	4701.8	3292.0	1376.5	443.2	247.7	-60.0
C0666	5277.0	3021.0	1293.0	32.3	269.7	33.0
C0668	5277.0	3028.0	1293.0	29.3	89.7	28.0
C0669	5310.0	3044.0	1291.1	50.6	269.7	-15.0
C0670	4998.3	2926.2	1422.0	26.8	269.7	-41.0
C0671	5292.0	3145.5	1398.5	140.6	269.7	-31.0
C0673	5292.0	3046.6	1290.5	40.8	269.7	-15.0
C0675	5000.0	2910.3	1422.1	26.8	89.7	-29.0
C0676	4982.0	2920.0	1422.0	21.4	269.7	-30.0
C0677	5118.0	3013.0	1270.3	18.3	128.7	2.0
C0678	5336.0	3017.4	1290.3	52.1	89.7	-13.0
C0679	4963.0	2912.5	1422.0	23.5	269.7	-32.0
C0680	4963.0	2908.5	1421.8	23.2	89.7	-34.0
C0681	5139.0	3076.0	1254.1	25.9	89.7	2.0
C0682	4982.0	2903.2	1422.0	25.0	89.7	-28.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0684	5749.2	3083.2	1468.9	164.9	292.7	-55.0
C0685	4909.0	2931.4	1401.4	34.8	269.7	-38.0
C0687	4872.0	2938.1	1348.0	7.5	89.7	2.0
C0688	4927.0	2933.5	1402.5	39.3	269.7	-21.0
C0689	5095.0	3113.6	1251.0	66.1	253.7	-29.0
C0692	4890.0	2938.5	1348.0	6.7	89.7	2.0
C0695	4963.0	3018.2	1292.5	13.9	269.7	2.0
C0696	5361.0	3079.3	1386.8	90.2	227.7	-13.0
C0697	5361.0	3079.3	1386.8	35.5	269.7	-13.0
C0698	5359.1	3079.3	1386.8	60.2	269.7	-41.0
C0699	4963.0	2914.4	1403.2	25.0	269.7	-41.0
C0700	4982.0	2914.0	1403.0	20.0	269.7	-52.0
C0701	5158.0	3070.1	1252.4	5.4	89.7	2.0
C0702	4982.0	2915.5	1403.0	22.6	89.7	-32.0
C0703	4963.0	2912.2	1402.5	20.7	89.7	-40.0
C0705	5336.0	3067.0	1388.6	26.0	269.7	-20.0
C0706	4945.0	2913.9	1402.8	25.3	89.7	-32.0
C0707	4927.0	2918.2	1402.2	25.0	89.7	-22.0
C0708	4909.0	2931.1	1401.4	20.1	269.7	-23.0
C0710	4852.0	3046.5	1311.8	101.9	269.7	11.0
C0711	4945.0	2917.9	1403.0	20.1	269.7	25.0
C0712	4927.0	2918.2	1404.4	33.5	89.7	25.0
C0713	5200.0	3028.0	1290.0	12.2	269.7	2.0
C0714	5200.0	3028.0	1290.0	12.2	269.7	25.0
C0715	5118.0	2960.2	1326.4	70.1	75.7	-7.0
C0716	4927.0	2915.7	1388.5	18.3	89.7	2.0
C0717	4927.0	2932.4	1404.2	40.2	269.7	25.0
C0718	5180.0	3049.0	1274.4	20.0	89.7	55.0
C0719	4963.0	2914.5	1386.2	18.3	89.7	2.0
C0721	5180.0	3064.3	1272.7	27.4	89.7	40.0
C0722	5200.0	3073.8	1270.0	46.6	269.7	-16.0
C0723	4982.0	2915.5	1386.1	18.3	89.7	2.0
C0724	4963.0	2914.4	1367.2	18.3	89.7	2.0
C0725	5180.0	3069.5	1253.6	18.3	89.7	2.0
C0730	5200.0	3073.8	1270.5	37.2	269.7	23.0
C0732	5291.5	3145.4	1298.2	178.1	267.7	-60.0
C0733	5277.0	3051.0	1072.8	35.4	269.7	22.0
C0734	4945.0	2914.1	1368.6	18.9	89.7	2.0
C0735	5446.5	3416.5	1482.4	535.2	266.7	-68.0
C0736	4909.0	2931.1	1401.4	18.3	89.7	-23.0
C0737	5000.0	2930.6	1368.1	18.3	269.7	2.0
C0739	4890.0	2930.1	1386.0	18.3	269.7	2.0
C0740	5222.0	3052.8	1272.1	32.0	89.7	23.0
C0741	4890.0	2939.2	1400.0	17.1	89.7	-34.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0742	4890.0	2941.2	1400.5	15.9	269.7	-34.0
C0743	4872.0	2952.5	1401.0	28.0	269.7	-23.0
C0744	5118.0	3012.5	1327.0	20.4	269.7	-10.0
C0745	5118.0	3013.6	1325.8	18.3	269.7	-35.0
C0746	4909.0	2936.5	1405.0	20.1	269.7	50.0
C0747	5240.0	3049.0	1273.0	36.6	89.7	32.0
C0749	4909.0	2928.7	1405.0	20.1	89.7	50.0
C0752	5446.5	3416.5	1482.5	446.8	266.7	-50.0
C0754	5310.0	3057.0	1272.0	20.0	89.7	2.0
C0755	5276.1	3146.3	1298.0	139.0	269.7	-44.0
C0756	4909.0	2926.2	1386.0	19.2	89.7	2.0
C0757	4832.0	2940.5	1347.3	20.0	89.7	-37.0
C0758	4832.0	2936.5	1347.3	20.0	269.7	-57.0
C0759	4890.0	2946.3	1385.8	14.3	89.7	2.0
C0760	4852.0	2937.4	1347.3	20.1	269.7	-45.0
C0761	4852.0	2940.4	1347.3	20.0	89.7	-30.0
C0762	4872.0	2945.7	1347.7	20.0	269.7	-40.0
C0763	5049.0	2928.2	1420.8	29.0	269.7	2.0
C0765	4890.0	2946.2	1347.4	25.0	269.7	-33.0
C0766	4909.0	2945.0	1347.2	20.0	269.7	-35.0
C0767	4927.0	2940.4	1347.2	25.4	269.7	-50.0
C0768	5312.3	3412.8	1488.0	493.8	266.7	-55.0
C0769	4945.0	2932.5	1346.2	20.0	269.7	-77.0
C0770	4927.0	2943.0	1347.0	40.0	89.7	-17.0
C0772	4890.0	2934.4	1402.0	34.8	269.7	2.0
C0773	4963.0	2924.3	1346.5	30.2	89.7	-18.0
C0774	4963.0	2924.6	1346.5	18.1	89.7	-65.0
C0775	4909.0	2934.0	1348.0	30.0	89.7	-20.0
C0776	4890.0	2938.8	1346.8	22.0	89.7	-27.0
C0777	4872.0	2939.6	1347.3	30.5	89.7	-20.0
C0778	5118.0	2991.7	1292.5	50.4	89.7	18.0
C0780	4945.0	2936.0	1346.8	30.0	89.7	-28.0
C0781	5180.0	3014.1	1310.5	55.0	269.7	12.0
C0782	5222.0	3017.5	1310.7	9.5	89.7	2.0
C0784	5180.0	3014.1	1309.5	40.0	269.7	-12.0
C0785	5139.0	2998.2	1290.9	58.4	89.7	21.0
C0786	4909.0	2925.3	1402.3	30.5	269.7	2.0
C0787	5180.0	3014.1	1308.5	35.0	269.7	-31.0
C0788	5200.0	3007.8	1310.3	40.0	269.7	20.0
C0791	5180.0	3003.7	1291.9	44.9	89.7	23.0
C0792	4934.3	3029.8	1311.5	40.0	255.7	-15.0
C0793	4963.0	2940.6	1311.5	13.7	89.7	0.0
C0794	4963.0	3042.1	1310.5	30.0	269.7	-22.0
C0795	5158.0	3059.6	1253.3	60.0	269.7	0.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0796	5310.0	3044.0	1291.5	40.0	269.7	-26.0
C0797	5309.9	3145.3	1298.3	150.0	297.7	-38.0
C0798	4909.0	2935.0	1313.1	24.3	89.7	2.0
C0799	4890.0	2943.9	1312.5	24.4	89.7	2.0
C0801	5180.0	3045.0	1270.2	45.0	269.7	2.0
C0804	5200.0	3042.8	1254.0	20.0	269.7	2.0
C0805	5258.0	3146.9	1297.7	150.0	269.7	-58.0
C0806	4852.0	2930.8	1348.7	40.0	269.7	2.0
C0807	5222.0	3039.2	1258.6	20.0	269.7	2.0
C0808	5180.0	3049.2	1254.4	20.0	269.7	2.0
C0809	5239.7	3149.6	1297.5	150.0	269.7	-58.0
C0810	4832.0	2933.8	951.1	40.0	269.7	2.0
C0811	5171.1	3166.8	1259.4	150.0	273.7	-21.0
C0813	5258.0	3049.0	1254.5	12.8	89.7	2.0
C0814	5277.0	3056.6	1256.0	20.0	269.7	2.0
C0815	5258.0	3040.0	1254.5	20.0	269.7	2.0
C0816	5240.0	3041.3	1255.0	20.0	269.7	2.0
C0817	5221.1	3143.0	1297.6	149.6	269.7	-60.0
C0818	4909.0	2921.8	1368.2	20.0	89.7	0.0
C0819	4890.0	2927.4	1367.5	22.0	89.7	2.0
C0820	5292.0	3049.2	1254.0	33.0	269.7	2.0
C0821	5060.3	2939.5	1418.5	65.0	152.7	4.0
C0822	5172.3	3168.1	1259.0	156.3	259.7	-25.0
C0823	5292.0	3062.5	1254.0	20.0	89.7	2.0
C0824	5277.0	3066.7	1255.5	23.0	89.7	2.0
C0825	5258.0	3072.5	1254.5	19.3	89.7	2.0
C0826	5060.8	3144.4	1278.3	147.0	278.7	-38.0
C0827	5222.0	3076.4	1255.0	30.0	89.7	2.0
C0828	5200.0	3080.7	1252.9	29.0	89.7	2.0
C0829	5138.6	3144.4	1256.0	137.3	269.7	-27.0
C0830	5240.0	3072.3	1255.0	30.0	89.7	2.0
C0831	4908.1	3024.8	1293.3	30.0	269.7	2.0
C0832	4908.8	3030.3	1293.0	10.0	89.7	2.0
C0833	5310.0	3029.2	1371.7	35.0	89.7	25.0
C0834	4889.0	3034.5	1296.5	10.0	89.7	2.0
C0835	4889.8	3026.5	1296.5	10.0	269.7	0.0
C0836	4872.0	3042.4	1293.2	13.0	89.7	2.0
C0837	5292.0	3047.9	1271.5	30.0	269.7	-26.0
C0838	4872.0	3033.8	1293.2	10.0	269.7	0.0
C0839	5310.0	3047.2	1271.0	30.1	269.7	-19.0
C0840	4852.0	3046.0	1292.8	12.0	89.7	2.0
C0841	4852.0	3041.0	1292.8	10.0	269.7	2.0
C0842	4927.0	2945.5	1331.0	30.0	269.7	2.0
C0843	4945.0	2938.0	1330.8	25.0	269.7	2.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0844	5069.5	3069.1	1256.0	31.0	89.7	2.0
C0846	4945.0	2951.0	1330.9	20.0	89.7	2.0
C0847	4909.0	2923.5	1330.3	10.0	269.7	2.0
C0848	4890.0	2931.5	1330.5	10.0	269.7	2.0
C0849	5073.1	3050.7	1236.5	34.0	89.7	2.0
C0850	5118.0	3072.8	1237.5	25.0	89.7	2.0
C0851	4982.0	2913.8	1385.1	21.3	269.7	-50.0
C0852	4982.0	2907.8	1385.1	25.2	89.7	-20.0
C0853	4963.0	2916.2	1380.8	20.0	269.7	-40.0
C0854	5103.7	3073.3	1237.0	25.0	89.7	2.0
C0855	4945.0	2916.3	1385.5	25.6	269.7	-40.0
C0857	4963.0	2914.0	1385.7	27.4	89.7	-30.0
C0858	4945.0	2914.5	1385.5	23.5	89.7	-30.0
C0861	4909.0	2926.2	1385.5	20.0	89.7	-35.0
C0862	4927.0	2915.7	1385.0	30.0	89.7	-27.0
C0863	4890.0	2939.4	1384.4	20.7	89.7	-50.0
C0864	4927.0	2920.0	1385.2	20.1	269.7	-40.0
C0865	5048.4	3052.9	1235.8	28.0	89.7	2.0
C0866	4832.0	2931.6	1369.5	40.8	269.7	2.0
C0867	4909.0	2933.0	1386.0	31.7	269.7	-30.0
C0869	4852.0	2936.3	1368.7	36.6	269.7	2.0
C0870	4890.0	2940.7	1385.0	24.7	269.7	-30.0
C0871	5139.0	3077.4	1237.0	24.7	89.7	2.0
C0872	4888.9	2920.6	1369.8	31.1	269.7	2.0
C0873	4872.0	2936.1	1387.0	29.0	269.7	2.0
C0874	4963.0	2908.2	1386.8	53.6	269.7	2.0
C0875	4890.0	2945.5	1387.4	60.4	89.7	2.0
C0876	4872.0	2969.9	1293.2	24.6	269.7	2.0
C0877	4857.1	2996.8	1282.6	30.0	89.7	2.0
C0879	4945.0	2926.7	1386.0	93.0	89.7	2.0
C0880	4909.0	2943.0	1386.8	47.9	89.7	2.0
C0881	5228.4	3486.3	1487.5	614.2	271.7	-54.5
C0882	4852.0	2984.2	1292.8	25.0	269.7	0.0
C0884	4963.0	2922.5	1388.0	60.1	89.7	2.0
C0886	4832.0	2941.5	1332.3	15.0	89.7	0.0
C0887	5240.0	3041.3	1256.0	46.6	269.7	2.0
C0888	4982.0	2932.0	1386.5	58.8	89.7	2.0
C0889	5222.0	3039.2	1239.0	49.7	269.7	2.0
C0890	5310.0	3029.2	1371.7	30.5	89.7	-14.0
C0891	5292.0	3032.5	1272.2	30.8	89.7	-15.0
C0892	5200.0	3061.0	1269.7	75.0	89.7	-22.0
C0893	5277.0	3032.5	1271.0	39.6	89.7	-15.0
C0895	5200.0	3051.7	1269.8	37.3	269.7	-33.0
C0896	5258.0	3036.3	1276.0	41.2	89.7	-13.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0897	5222.0	3052.8	1270.3	29.0	89.7	-18.0
C0898	5180.0	3063.3	1270.0	70.2	89.7	-19.0
C0899	5200.0	3044.2	1269.7	25.0	89.7	-20.0
C0900	5277.0	3051.3	1271.0	35.0	269.7	-16.0
C0901	5222.0	3080.5	1269.8	39.6	269.7	-17.0
C0902	5258.0	3060.0	1276.0	37.7	269.7	-17.0
C0903	5180.0	3074.6	1270.8	31.4	269.7	-25.0
C0904	4832.0	3046.5	1292.4	105.7	269.7	4.0
C0905	4909.0	3024.5	1292.0	94.5	269.7	-10.0
C0906	4926.6	2955.5	1293.0	22.8	89.7	2.0
C0907	4926.8	2950.1	1293.0	20.0	269.7	2.0
C0908	4832.0	3046.5	1292.2	100.0	269.7	-10.0
C0909	5309.9	3145.3	1298.3	134.4	269.7	-45.0
C0910	4872.0	3033.8	1292.3	86.0	269.7	-13.0
C0912	5158.0	3068.5	1239.1	21.0	89.7	2.0
C0913	5222.0	3062.0	1264.0	7.4	89.7	2.0
C0914	4890.0	3026.4	1293.0	93.6	269.7	-14.0
C0915	5309.9	3145.3	1298.3	136.6	285.7	-36.0
C0916	4872.0	2978.7	1292.2	10.0	89.7	2.0
C0918	5110.1	3149.9	1284.0	156.1	279.7	-76.0
C0919	4890.0	2929.5	1348.2	25.0	269.7	2.0
C0920	4872.0	2955.7	1349.1	25.4	89.7	2.0
C0921	5098.1	3185.4	1278.3	148.7	259.7	-70.0
C0922	4852.0	2960.5	1313.5	20.1	269.7	2.0
C0923	4852.0	2967.6	1313.5	22.7	89.7	2.0
C0924	4812.0	2961.5	1313.7	20.1	89.7	2.0
C0925	4812.0	2954.5	1313.7	24.4	269.7	2.0
C0926	5108.4	3149.8	1000.0	159.4	255.7	-55.0
C0927	5171.1	3166.8	1259.4	122.5	277.2	-50.0
C0928	5240.0	3045.7	1238.6	24.9	89.7	2.0
C0932	4890.0	2936.1	1400.5	33.8	269.7	-20.0
C0933	4945.0	2921.5	1368.0	26.8	269.7	-50.0
C0935	4890.0	2927.4	1385.0	24.7	269.7	-20.0
C0936	5114.5	3401.9	1046.0	645.0	276.7	-62.0
C0938	4927.0	2929.5	1367.6	27.7	269.7	-35.0
C0940	4872.0	2930.5	1388.5	34.8	269.7	24.0
C0941	4872.0	2932.4	1385.5	24.7	269.7	-23.0
C0942	4909.0	2961.5	1331.0	10.0	89.7	2.0
C0943	4909.0	2931.1	1366.2	26.5	269.7	-50.0
C0944	4890.0	2958.8	1330.5	10.1	89.7	2.0
C0945	4890.0	2950.4	1330.5	10.6	269.7	2.0
C0946	5222.0	3052.2	1238.1	76.5	89.7	2.0
C0947	4890.0	2937.3	1368.0	27.4	269.7	-45.0
C0949	4945.0	2914.1	1367.5	52.1	89.7	-25.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C0950	4872.0	2917.7	1386.0	30.5	89.7	-19.0
C0951	4852.0	2926.5	1369.0	41.2	89.7	-31.0
C0952	5258.0	3044.8	1238.4	62.5	89.7	2.0
C0953	5117.2	3480.6	1463.8	670.1	269.7	-67.0
C0954	4872.0	2927.4	1369.0	41.8	89.7	-27.0
C0955	5277.0	3047.2	1239.5	68.3	77.7	2.0
C0956	4890.0	2927.5	1366.5	35.7	89.7	-25.0
C0957	5222.0	3041.0	1380.2	36.0	89.7	13.0
C0958	5158.0	3074.1	1254.5	15.1	89.7	2.0
C0959	5200.0	3042.8	1254.3	49.1	269.7	2.0
C0960	4909.0	2921.7	1367.0	64.3	89.7	-25.0
C0961	5258.0	2957.9	1381.4	41.8	89.7	19.0
C0962	4818.9	3054.4	1288.0	42.3	137.7	2.0
C0963	4927.0	2921.5	1367.3	39.6	89.7	-25.0
C0964	5277.0	3006.2	1448.0	21.4	269.7	-78.0
C0965	4963.0	2914.4	1366.5	31.4	89.7	-27.0
C0966	5240.0	3040.7	1239.3	48.8	89.7	15.0
C0967	4816.9	3051.5	1288.0	19.2	227.7	2.0
C0968	5200.0	3056.0	1237.7	27.4	81.7	2.0
C0970	5258.0	3044.8	1241.0	52.7	89.7	15.0
C0971	4824.9	3055.8	1288.0	24.4	89.7	2.0
C0972	5180.0	3077.0	1253.0	30.5	269.7	-17.0
C0973	5180.0	3049.0	1288.8	26.8	269.7	-32.0
C0974	5200.0	3002.0	1446.0	20.1	269.7	-72.0
C0975	5095.0	3045.0	1437.4	52.1	269.7	-23.0
C0976	4833.3	3052.2	1288.0	139.3	67.7	-40.0
C0977	5200.0	3074.6	1252.9	21.3	269.7	-24.0
C0979	5240.0	3085.7	1253.7	25.0	269.7	-30.0
C0980	5240.0	3085.4	1253.9	30.5	269.7	-18.0
C0981	5292.0	3052.0	1252.4	25.0	269.7	-20.0
C0982	4951.1	2958.0	1441.0	53.0	277.7	-19.0
C0983	5277.0	3056.5	1253.5	25.0	269.7	-18.0
C0986	5258.0	3062.3	1253.5	30.8	269.7	-20.0
C0987	5258.0	3062.3	1253.5	11.0	269.7	-55.0
C0988	4890.0	2940.4	1430.0	22.8	269.7	-90.0
C0989	5222.0	3057.5	1252.3	22.0	269.7	-19.0
C0990	5240.0	3026.0	1398.7	19.2	269.7	22.0
C0991	5180.0	3050.5	1238.1	10.5	269.7	2.0
C0992	5240.0	3026.0	1396.2	18.9	269.7	-47.0
C0994	4871.6	2946.7	1294.0	151.8	269.7	2.0
C0995	5240.0	3040.7	1238.3	10.5	269.7	2.0
C0996	4775.2	3071.3	1358.5	153.3	246.4	-27.4
C0998	5200.0	3041.1	1237.4	10.0	269.7	2.0
C1000	5095.0	2963.7	1308.2	40.8	89.7	13.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1004	5222.0	3039.8	1238.2	10.5	269.7	2.0
C1007	5240.0	2967.0	1346.6	31.7	89.7	13.0
C1009	4832.0	2947.2	1331.0	12.2	269.7	-57.0
C1010	4852.0	2954.4	1331.0	17.1	269.7	-56.0
C1011	4890.0	2930.8	1329.2	33.0	89.7	-32.0
C1012	4832.0	2940.8	1330.8	24.1	89.7	-23.0
C1013	5139.0	3075.5	1252.3	26.5	269.7	-25.0
C1014	4852.0	2945.6	1330.5	31.7	89.7	-18.0
C1015	4872.0	2934.0	1335.8	39.5	89.7	-13.0
C1016	5222.0	3052.2	1241.2	35.1	89.7	14.0
C1017	5158.0	3068.5	1240.5	21.9	89.7	34.0
C1018	5180.0	3060.6	1241.7	30.2	89.7	18.0
C1019	5200.0	3056.0	1241.0	30.8	89.7	12.0
C1020	5962.3	3139.5	1467.4	198.4	269.2	-40.0
C1021	5139.0	3076.3	1240.0	25.6	89.7	25.0
C1022	4830.1	3045.9	1293.7	91.2	247.7	-35.0
C1023	4848.6	3249.5	1345.9	295.8	67.2	-45.0
C1024	5200.0	3041.1	1237.1	51.2	269.7	2.0
C1025	5222.0	3039.8	1239.0	52.1	269.7	2.0
C1027	5925.4	3122.7	1488.0	100.0	269.7	-47.0
C1029	4872.0	3033.6	1292.5	104.9	269.7	-47.0
C1030	5139.0	3084.5	1218.6	19.5	269.7	2.0
C1031	5139.0	3090.3	1218.6	11.6	89.7	2.0
C1033	4981.2	3014.8	1292.5	20.1	269.7	2.0
C1034	5000.0	3017.0	1291.5	17.1	269.7	2.0
C1035	4911.9	3025.8	1292.2	98.5	275.9	-42.8
C1036	5175.9	3074.9	1217.9	24.7	67.1	2.3
C1037	5170.8	3073.2	1218.0	14.9	273.9	1.0
C1038	5200.0	3056.0	1236.8	39.6	89.7	-20.5
C1039	5200.0	3066.0	1236.5	29.9	269.7	-31.0
C1040	5222.0	3052.3	1237.2	48.2	89.7	-21.0
C1041	4981.2	3014.8	1295.5	25.3	269.7	42.0
C1042	5001.6	3016.5	1294.5	25.0	269.7	38.0
C1044	5240.0	3046.0	1238.0	47.9	89.7	-17.0
C1045	4837.8	2954.9	1312.6	31.1	89.7	-17.0
C1046	4855.8	2954.5	1312.1	44.2	89.7	-16.0
C1047	4847.9	2962.3	1312.4	20.1	269.7	-51.0
C1048	5239.7	3069.3	1238.4	35.1	272.1	-16.3
C1049	5270.2	3072.1	1239.4	40.2	269.7	-48.0
C1050	5223.0	3075.4	1238.1	40.5	272.4	-30.5
C1051	4889.4	2943.5	1312.6	35.4	83.8	-21.6
C1052	4790.5	2955.3	1314.4	21.0	93.9	2.2
C1053	4791.0	2949.3	1314.4	10.5	273.1	1.5
C1054	4888.5	2956.8	1312.4	25.6	269.6	-31.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1055	4871.6	2958.7	1312.5	20.7	275.4	-38.3
C1056	4869.6	2962.8	1312.5	26.7	90.3	-37.1
C1057	5271.3	3051.9	1238.3	33.4	67.6	-17.7
C1058	5256.5	3044.1	1238.4	44.5	95.7	-14.1
C1059	4812.0	2961.5	1316.7	15.8	91.5	49.1
C1060	4982.0	2919.4	1267.6	27.4	272.5	-2.2
C1061	4791.4	2959.4	1294.7	10.4	267.7	3.9
C1062	4810.0	2968.3	1294.4	16.2	263.5	2.1
C1063	4810.9	2979.9	1294.3	16.8	83.2	2.5
C1064	4791.1	2985.4	1294.4	17.1	91.7	4.3
C1065	4888.8	2951.0	1331.8	27.4	261.4	-33.2
C1066	4907.9	2950.9	1330.7	25.3	275.4	-21.0
C1067	4906.3	2943.9	1313.3	29.6	97.4	20.3
C1068	4926.8	2951.4	1329.6	29.6	92.7	-15.8
C1069	4927.1	2951.9	1329.6	17.1	269.5	-36.7
C1070	5239.2	3082.4	1219.4	11.3	88.1	3.2
C1071	5221.8	3088.3	1219.3	10.4	75.8	4.3
C1072	4908.6	2962.2	1312.5	34.1	269.0	-19.7
C1073	5239.1	3063.2	1219.5	26.8	266.5	1.5
C1074	5257.3	3068.4	1219.9	27.1	87.9	3.0
C1075	5276.8	3068.3	1220.1	27.5	95.2	4.1
C1076	5291.5	3072.4	1220.5	21.3	86.5	4.5
C1077	5293.9	3073.4	1220.5	28.3	36.3	0.6
C1078	5291.0	3064.9	1220.5	11.3	268.0	1.7
C1079	5276.9	3062.7	1220.3	16.5	277.4	1.4
C1080	5257.4	3057.6	1219.9	24.4	268.6	1.5
C1081	5221.1	3067.2	1219.1	25.3	270.3	2.7
C1082	5199.7	3075.6	1218.3	30.5	267.6	1.1
C1083	5179.8	3066.1	1218.9	40.3	91.7	20.3
C1084	5178.0	3070.9	1237.4	26.2	269.4	-18.7
C1085	5157.6	3071.9	1236.8	26.5	269.7	-34.0
C1086	5157.7	3068.2	1237.1	39.6	88.7	-23.9
C1087	5136.8	3080.8	1219.9	25.3	94.5	32.8
C1088	4943.5	2959.4	1311.8	3.1	87.6	-29.7
C1089	4944.0	2955.4	1311.5	22.9	89.0	-27.7
C1090	4943.7	2957.4	1311.5	10.4	262.8	-68.1
C1091	4927.5	2962.6	1312.2	29.3	267.4	-26.5
C1092	4928.3	2955.3	1312.1	24.4	85.5	-24.9
C1093	4906.1	2943.6	1312.8	30.2	100.0	-15.4
C1094	5292.3	3075.2	1219.1	16.2	272.5	22.1
C1095	5276.4	3068.3	1218.6	24.1	280.9	-38.7
C1096	5289.9	3065.6	1222.3	33.0	283.6	22.8
C1097	5289.8	3065.7	1223.1	15.8	271.2	56.0
C1098	5179.8	3065.5	1217.6	38.1	85.5	-32.6

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1099	5277.0	3062.4	1221.5	26.3	277.4	32.9
C1100	5239.9	3077.5	1218.6	25.3	269.8	-35.4
C1101	5220.7	3080.7	1218.5	25.6	256.6	-41.0
C1102	5257.4	3057.0	1221.1	32.3	267.1	27.2
C1103	5199.8	3084.5	1217.4	24.4	269.4	-42.4
C1104	5179.4	3078.6	1217.4	31.4	265.9	-25.9
C1105	5139.9	3083.9	1217.2	21.9	268.4	-43.8
C1106	5157.5	3082.3	1216.8	21.0	270.5	-41.6
C1107	4800.4	3074.3	1295.1	126.2	237.8	-26.6
C1108	4811.9	3076.7	1295.5	4.6	71.3	3.2
C1109	4837.3	3058.6	1294.7	10.7	66.8	0.7
C1110	4864.9	3047.6	1294.0	7.6	69.7	3.5
C1111	4854.4	3041.7	1294.1	4.0	243.6	2.9
C1112	4837.3	3058.6	1294.5	5.5	253.1	0.7
C1113	4828.0	3064.0	1215.0	9.5	65.5	0.0
C1114	4818.0	3064.4	1295.4	6.1	70.2	3.9
C1115	4832.7	3061.1	1295.0	4.6	68.6	0.0
C1116	4832.7	3061.1	1294.8	3.7	248.7	2.8
C1117	4884.4	3027.7	1293.0	3.1	249.5	3.3
C1118	4878.2	3039.0	1293.3	9.8	68.7	2.3
C1119	5181.3	3077.5	1198.1	20.7	271.1	1.2
C1120	4882.4	3036.7	1293.3	9.8	68.9	3.5
C1121	4901.2	3029.1	1293.1	5.2	91.6	2.8
C1122	4891.9	3033.0	1293.1	7.0	70.6	4.7
C1123	4912.4	3030.7	1293.0	3.1	66.5	3.0
C1124	4934.5	3032.0	1292.5	3.4	70.4	4.6
C1125	4932.7	3027.4	1292.6	3.1	251.7	4.8
C1126	5157.5	3087.9	1197.8	25.0	268.9	1.5
C1127	4720.5	3091.0	1210.1	10.1	251.4	0.5
C1128	4752.6	3089.1	1209.6	5.2	67.5	4.7
C1129	4722.6	3096.6	1210.4	10.1	71.8	4.8
C1130	4750.0	3083.2	1209.5	8.2	245.9	-4.7
C1131	4730.7	3089.3	1210.0	6.7	251.2	1.8
C1132	4749.8	3086.6	1209.7	7.9	251.2	4.6
C1133	4745.2	3084.8	1209.5	6.1	249.3	3.1
C1134	4725.6	3090.2	1210.1	9.1	251.5	2.2
C1135	4851.5	3414.8	1427.8	370.5	252.7	-58.4
C1136	4727.6	3095.8	1210.1	3.7	70.7	3.9
C1137	4735.9	3087.7	1208.3	6.4	250.9	0.0
C1138	4778.8	3099.7	1209.4	3.4	246.8	4.4
C1139	4770.8	3082.5	1209.2	6.1	71.5	2.3
C1140	4761.4	3072.8	1209.5	3.4	248.5	4.2
C1141	4779.0	3074.4	1209.3	5.2	250.3	0.1
C1142	4781.7	3082.0	1209.1	5.2	69.3	0.7

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1143	4790.3	3076.7	1209.1	3.7	254.0	1.6
C1144	4763.4	3076.6	1209.3	3.4	248.5	3.6
C1145	4765.7	3081.8	1209.1	7.9	64.2	1.8
C1146	4776.0	3081.6	1209.2	3.4	74.2	1.6
C1147	4714.8	3091.2	1210.6	6.1	248.7	0.0
C1148	4710.6	3092.5	1210.5	6.9	249.1	0.0
C1149	4749.1	3064.2	1210.4	4.0	102.4	0.0
C1150	4797.2	3078.2	1208.8	5.5	259.6	-2.0
C1151	4784.3	3075.8	1209.3	3.4	253.3	5.0
C1152	5031.1	2868.5	1198.7	24.8	270.5	1.6
C1153	5180.6	3095.6	1198.3	27.4	92.7	5.0
C1154	5157.7	3104.7	1197.7	19.8	89.6	1.7
C1155	4819.8	3412.9	1422.2	600.0	246.4	-52.7
C1156	5199.5	3088.7	1198.9	60.1	89.3	2.7
C1157	4761.0	3084.5	1208.7	4.4	68.4	0.0
C1158	4706.0	3094.8	1211.1	7.3	249.9	0.0
C1159	4707.3	3099.3	1209.0	4.1	69.9	0.0
C1160	4730.9	3111.6	1210.3	3.1	67.7	0.0
C1161	4757.3	3088.0	1208.8	4.0	65.8	0.0
C1162	4869.1	3152.1	1208.5	4.0	255.2	0.0
C1163	4807.7	3079.7	1208.3	3.4	252.9	0.0
C1164	4822.4	3075.5	1208.8	11.6	68.5	0.0
C1165	4789.7	3414.8	1418.3	625.0	248.4	-52.6
C1166	4831.4	3072.8	1209.0	11.9	77.2	0.0
C1167	4833.5	3075.0	1209.0	10.1	69.7	0.0
C1168	5221.6	3084.0	1198.0	25.0	90.2	4.0
C1169	5238.7	3081.1	1199.5	36.0	89.7	5.1
C1170	5254.2	3060.7	1199.2	16.2	271.8	2.5
C1171	4818.4	3064.5	1294.7	3.1	257.1	0.0
C1172	4808.9	3068.2	1294.7	3.4	247.9	0.0
C1173	4841.7	3042.8	1294.9	5.8	247.2	0.0
C1174	4836.4	3043.6	1294.7	4.0	68.0	0.0
C1175	4846.6	3041.7	1294.7	8.7	71.7	0.0
C1176	4781.2	2979.3	1294.5	53.8	94.7	0.7
C1177	5198.4	3078.9	1200.1	32.3	97.0	43.4
C1178	5199.9	3071.3	1198.4	61.6	271.3	0.0
C1179	4865.5	3035.6	1293.5	3.5	249.7	1.0
C1180	4872.8	3040.9	1293.7	10.4	64.9	1.0
C1181	5092.3	3073.4	1235.5	25.3	267.8	-43.4
C1182	5157.6	3099.7	1175.1	23.5	268.7	1.7
C1183	5157.4	3106.6	1175.1	21.6	88.8	0.2
C1184	5138.3	3109.6	1174.8	19.2	89.6	0.3
C1185	5179.3	3100.0	1175.6	30.3	88.2	2.9
C1186	5199.8	3075.9	1119.8	88.4	89.1	-21.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1187	5181.6	3083.8	1197.5	40.5	92.6	-28.7
C1188	5157.6	3080.8	1216.8	31.4	87.8	-21.0
C1189	5179.8	3066.1	1218.8	41.4	91.0	-13.0
C1190	5276.8	3080.6	1199.7	20.1	269.8	5.1
C1191	5257.6	3083.9	1199.3	24.4	271.1	2.8
C1192	5267.2	3083.4	1199.6	19.8	274.7	4.4
C1193	5257.6	3088.7	1200.1	13.4	90.1	3.3
C1194	5276.6	3086.1	1199.8	24.7	91.4	3.1
C1195	5290.4	3094.5	1200.3	21.3	84.4	3.3
C1196	5294.0	3092.5	1200.3	57.9	34.9	1.6
C1197	5083.2	3050.0	1252.5	67.1	260.7	16.0
C1198	5114.8	3073.4	1236.0	14.6	266.2	-32.0
C1199	5114.8	3074.4	1236.0	19.8	266.2	-51.0
C1200	5134.1	3078.2	1236.3	23.8	267.2	-44.9
C1201	5258.7	3077.2	1218.7	34.0	270.0	-49.0
C1202	5221.7	3090.4	1198.6	25.3	264.2	-16.0
C1203	5199.7	3093.2	1198.2	31.7	269.7	-17.0
C1204	5193.3	3057.5	1156.7	180.4	97.9	-32.4
C1205	5179.8	3102.7	1197.6	101.8	272.9	-20.5
C1206	5193.6	3057.4	1156.7	570.4	74.0	-29.6
C1207	5179.7	3071.2	1197.0	31.4	79.3	-46.1
C1208	5258.6	3060.7	1218.8	126.3	91.1	-24.1
C1209	5276.8	3068.0	1219.0	69.0	100.5	-27.3
C1213	5276.7	3086.2	1199.2	91.1	87.9	-23.2
C1214	5257.6	3088.6	1199.6	105.1	89.3	-21.8
C1215	5239.9	3103.3	1180.8	11.6	88.2	-1.1
C1216	5239.9	3102.9	1180.0	25.3	89.4	-34.8
C1217	5221.3	3103.6	1179.5	75.7	98.1	1.7
C1218	5243.7	3080.7	1202.2	54.4	94.3	45.0
C1219	5018.1	2927.8	1382.4	25.2	303.8	2.1
C1220	5057.9	2934.0	1378.6	19.2	314.2	-0.7
C1221	5019.6	2937.4	1369.9	43.0	279.8	0.7
C1222	5107.9	2945.5	1377.0	19.5	263.3	2.7
C1223	5019.4	2937.9	1369.0	37.2	264.4	-36.5
C1224	5221.8	3084.1	1201.2	29.4	95.0	44.0
C1225	5107.9	2945.6	1376.3	27.1	266.4	-21.9
C1226	5239.6	3096.1	1181.0	17.7	266.0	-5.2
C1227	5253.3	3095.8	1182.2	31.4	40.1	1.6
C1228	5199.5	3109.9	1178.4	34.4	83.4	-25.0
C1229	5199.4	3088.4	1198.3	33.8	88.2	-25.3
C1230	5239.9	3103.5	1181.7	28.7	89.4	23.3
C1231	5253.2	3095.8	1182.4	32.6	86.1	0.0
C1232	5180.7	3095.3	1198.0	31.1	89.9	-16.0
C1233	5199.2	3109.8	1179.0	32.3	89.2	1.1

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1234	5239.1	3096.2	1181.7	30.8	251.6	29.8
C1235	5238.3	3081.2	1186.3	25.3	88.9	21.0
C1236	5157.6	3108.1	1173.6	44.5	89.2	-31.3
C1237	5221.8	3090.7	1184.3	25.9	75.8	36.4
C1238	5179.4	3099.8	1174.6	39.6	82.8	-27.6
C1239	4780.5	3078.3	1208.0	63.9	-42.3	-90.0
C1240	4780.6	3078.6	1208.0	71.2	69.1	-76.6
C1241	4780.7	3078.8	1208.0	63.9	69.6	-65.8
C1242	4892.2	2950.4	1293.0	50.5	79.0	-9.6
C1243	5019.7	2931.4	1330.7	15.2	262.3	22.2
C1244	5026.0	2936.6	1330.0	16.9	122.4	2.8
C1245	5095.2	2952.4	1328.2	16.2	282.0	-30.0
C1246	5098.3	2939.4	1332.8	19.5	99.3	45.6
C1247	5017.8	2933.0	1347.7	16.2	88.2	2.9
C1248	4999.1	2927.2	1347.6	18.3	78.2	0.1
C1249	5116.8	3053.2	1288.0	24.1	267.0	-54.0
C1250	4888.1	3652.2	1468.5	205.0	252.6	-49.4
C1251	5010.7	2934.3	1311.5	11.6	279.2	1.9
C1252	5116.9	3049.2	1288.5	70.6	267.4	-20.8
C1253	5060.9	3047.8	1137.2	180.0	87.3	-20.7
C1254	5118.4	3065.7	1254.2	30.2	271.9	30.6
C1255	4861.0	3544.5	1475.0	870.0	252.1	-53.5
C1256	5118.3	3065.7	1253.4	20.7	268.4	2.9
C1257	5118.3	3066.1	1252.6	19.2	268.0	-35.3
C1258	5118.3	3071.9	1253.3	17.4	91.3	0.9
C1259	5061.2	3045.6	1137.2	218.0	76.1	-31.3
C1261	5093.7	3062.0	1252.4	31.1	100.9	-19.5
C1262	5194.3	3057.0	1156.7	169.1	69.4	-18.1
C1263	5094.5	3067.0	1252.5	20.1	261.7	-25.8
C1264	5114.6	3062.5	1237.0	10.7	268.7	0.7
C1265	5114.6	3073.8	1236.0	34.9	87.0	-27.5
C1266	5071.5	3052.4	1235.4	43.6	94.1	-17.7
C1267	5194.3	3056.9	1156.7	228.0	72.2	-41.8
C1268	5070.5	3060.5	1235.0	15.9	273.2	-40.5
C1269	5070.6	3058.6	1239.6	44.5	280.2	38.7
C1270	4709.5	3376.6	1396.7	517.0	252.7	-62.5
C1271	5193.9	3054.4	1156.5	145.9	91.2	-15.8
C1272	5156.5	2993.1	1378.7	20.7	269.7	-26.0
C1273	5071.0	3051.9	1239.8	25.0	96.6	38.1
C1274	5193.7	3057.5	1156.6	160.0	85.1	-26.9
C1275	5114.7	3072.2	1240.3	17.1	84.6	40.6
C1276	5094.6	3057.1	1236.4	11.3	272.5	2.5
C1277	5094.2	3062.2	1236.0	42.4	94.6	-13.0
C1279	5142.7	3006.2	1271.3	49.0	96.1	15.9

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1280	5061.0	3045.7	1137.2	245.2	83.1	-40.2
C1282	5156.5	2993.1	1378.0	59.4	276.7	-23.0
C1283	5291.6	3050.8	1099.8	183.9	89.7	-6.9
C1284	4908.4	2996.2	1273.4	56.9	271.0	8.9
C1285	6026.7	3295.2	1488.3	241.5	272.4	-52.8
C1286	5291.6	3050.6	1099.2	215.0	89.9	-12.7
C1287	5132.2	3098.3	1149.0	114.5	91.0	-15.6
C1288	4908.4	2996.2	1272.8	49.0	272.3	-14.3
C1289	4908.4	2996.3	1272.5	48.7	271.8	-28.7
C1290	6018.6	3511.0	1476.4	582.5	274.1	-54.8
C1291	5132.3	3098.1	1148.6	136.7	86.6	-23.9
C1292	5291.6	3050.2	1098.5	238.7	92.4	-31.3
C1293	4926.4	3000.6	1291.9	35.7	89.3	-15.0
C1294	5132.8	3097.6	1148.6	147.3	73.6	-29.0
C1295	4815.2	3608.6	1481.8	864.0	255.1	-53.3
C1296	4944.1	3009.1	1291.2	24.8	89.2	-26.0
C1297	4945.5	3008.5	1291.2	36.9	44.3	-18.8
C1298	5132.7	3097.5	1148.6	180.1	94.2	-34.0
C1299	5276.7	3049.3	1100.1	188.3	91.0	3.3
C1300	4721.4	3092.9	1208.9	55.7	-42.3	-90.0
C1301	4774.7	2978.1	1277.0	151.5	102.2	-21.8
C1302	5132.1	3097.1	1148.6	44.0	93.3	-44.7
C1303	5132.5	3097.0	1148.6	195.0	76.1	-44.3
C1304	4721.4	3093.0	1208.9	56.3	67.7	-85.0
C1305	5276.5	3049.3	1099.6	161.3	95.5	10.2
C1306	5276.6	3049.2	1098.7	229.5	93.2	-20.1
C1307	5029.7	3130.6	1125.5	140.0	82.7	-37.2
C1308	4774.6	2978.4	1277.0	140.0	102.1	-14.1
C1309	4721.2	3092.5	1208.9	21.3	247.7	-68.0
C1310	4721.4	3092.9	1208.9	103.0	67.7	-75.0
C1311	4765.4	3083.4	1274.7	9.5	69.2	1.5
C1312	5276.6	3048.6	1101.0	310.3	92.9	-34.6
C1313	5029.6	3130.2	1125.6	189.0	82.3	-49.2
C1314	4763.2	3078.2	1274.6	3.1	251.5	0.2
C1315	4780.8	3081.4	1274.4	9.1	70.1	30.3
C1316	4776.7	2977.5	1277.1	129.0	83.9	-21.5
C1317	4752.8	3092.0	1275.4	3.1	70.9	1.9
C1318	4749.2	3085.8	1275.5	10.4	252.8	2.2
C1319	5117.7	3133.5	1117.0	231.1	89.9	-60.6
C1320	4791.7	3072.4	1273.6	135.2	265.9	-13.6
C1321	4737.9	3087.1	1275.7	11.6	252.5	2.6
C1322	4740.0	3091.7	1275.6	7.1	72.0	0.0
C1323	4756.8	3086.4	1208.4	95.1	65.9	-78.2
C1324	4791.7	3072.5	1273.1	136.5	265.5	-31.2

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1325	4795.1	3078.1	1274.0	9.3	71.6	1.7
C1326	5117.7	3133.8	1117.0	195.3	89.7	-46.0
C1327	4789.9	3088.3	1274.3	4.6	248.5	2.8
C1328	4808.8	3071.2	1273.7	7.9	68.2	1.6
C1329	4811.3	3069.9	1273.7	13.4	64.1	0.3
C1330	4835.7	3058.5	1273.6	10.1	70.5	1.6
C1331	5276.5	3049.3	1098.7	197.0	95.6	-15.5
C1332	5116.9	3136.1	1117.0	108.0	102.5	-20.6
C1333	4791.0	2994.0	1276.9	113.8	108.2	-7.4
C1334	4823.6	3067.6	1273.8	5.4	70.8	-1.5
C1335	4849.8	3052.9	1273.7	5.2	70.9	2.6
C1336	4878.8	3043.5	1273.4	5.2	66.2	4.3
C1337	4875.9	3036.6	1273.1	15.2	243.2	2.0
C1338	4862.6	3042.2	1273.6	15.9	249.3	1.3
C1339	4747.4	3086.3	1274.8	140.5	270.7	-29.5
C1340	4834.0	3052.6	1273.6	7.3	249.9	0.6
C1341	5117.4	3133.8	1117.0	155.8	102.7	-52.0
C1342	4791.7	2974.5	1276.7	39.9	95.9	-29.2
C1343	5222.5	3028.1	1104.4	305.3	100.6	-30.9
C1344	4833.1	2971.7	1275.7	39.6	90.8	-29.6
C1345	5117.2	3134.4	1116.9	134.0	103.1	-36.1
C1346	5199.9	3133.1	1118.5	53.0	89.1	-3.0
C1347	5310.0	3112.1	1181.9	118.9	89.3	-30.0
C1348	5223.6	3028.5	1104.5	256.1	93.6	-29.0
C1349	5310.0	3112.2	1182.5	109.8	89.4	-8.1
C1350	5220.8	3130.5	1119.4	53.0	97.7	0.9
C1351	5240.3	3127.8	1119.7	61.5	88.0	2.4
C1352	5103.9	3088.4	1084.0	182.9	70.5	-29.7
C1353	4790.4	2994.2	1278.4	145.1	124.8	-6.7
C1354	5257.7	3124.8	1119.9	67.6	89.7	2.8
C1355	5193.6	3057.2	1157.2	275.0	91.6	-42.5
C1356	4792.2	2993.0	1277.0	111.1	73.5	-17.4
C1357	5104.0	3087.7	1083.5	200.6	60.0	-37.5
C1358	5278.9	3129.1	1121.1	75.7	89.3	4.3
C1359	4808.7	2988.1	1276.7	98.2	64.5	-9.1
C1360	5071.6	3072.1	1216.3	15.5	269.2	1.4
C1361	5072.2	3080.1	1216.6	25.3	87.1	2.5
C1362	5095.3	3090.4	1216.4	16.2	279.7	2.0
C1363	5095.2	3097.0	1216.6	10.4	87.1	1.9
C1364	5117.5	3086.9	1216.3	28.4	268.8	-36.2
C1365	4808.6	2987.9	1276.1	125.5	64.1	-31.1
C1366	5140.0	3089.6	1216.9	52.4	88.5	-29.5
C1367	5117.8	3085.3	1216.9	35.4	91.8	-24.7
C1368	4981.0	3059.4	1067.9	193.5	80.0	-7.1

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1369	4871.6	2981.3	1272.7	47.5	269.6	-35.2
C1370	4889.8	2971.0	1271.5	38.5	266.6	-34.9
C1371	5160.5	2977.2	1379.6	18.9	311.6	-16.2
C1372	5264.3	3114.5	1180.2	109.9	78.9	-18.5
C1373	4701.7	3099.2	1210.7	18.6	171.7	0.9
C1374	4701.2	3099.5	1210.7	17.7	156.4	0.5
C1375	5031.7	2852.6	1379.2	35.5	189.0	-26.2
C1377	4710.4	3085.9	1275.4	46.0	117.0	-65.9
C1378	5335.5	3181.8	1122.0	38.1	90.8	-1.1
C1379	5351.7	3182.9	1122.3	63.4	67.0	1.7
C1380	5335.7	3181.7	1124.8	34.8	89.4	46.5
C1381	4749.5	3081.4	1231.2	10.1	64.7	1.1
C1382	4760.6	3079.5	1230.2	10.4	74.4	1.3
C1383	4770.1	3077.8	1230.2	7.0	74.6	0.1
C1384	5322.4	3181.6	1121.8	54.8	90.8	0.5
C1385	4779.5	3076.8	1231.0	9.1	67.6	4.1
C1386	4790.1	3074.6	1231.5	10.4	74.8	4.4
C1388	4727.0	3085.8	1231.0	9.1	55.0	1.4
C1389	5291.1	3166.6	1120.6	48.5	105.5	2.4
C1390	4739.4	3082.7	1231.6	40.1	65.2	1.2
C1391	5199.9	3133.6	1118.4	49.4	87.9	24.0
C1392	5240.1	3127.6	1119.2	86.4	89.4	-13.2
C1393	5224.5	3028.2	1104.5	184.3	92.2	-43.9
C1394	5240.2	3128.2	1119.5	68.8	88.5	22.5
C1395	5383.9	3021.6	1099.6	396.5	88.6	-32.3
C1396	5240.1	3154.1	1096.4	46.6	262.6	1.4
C1397	5240.2	3154.1	1094.9	56.9	267.0	-30.6
C1398	5241.4	3160.8	1095.5	50.9	86.9	0.5
C1399	5278.7	3113.3	1180.7	104.6	87.1	-34.0
C1400	5280.2	3076.9	1098.7	580.6	89.9	-57.8
C1401	5257.5	3149.0	1097.4	51.4	271.1	25.9
C1402	5257.5	3149.5	1095.7	63.3	271.9	-35.0
C1403	5291.7	3113.4	1182.0	79.0	86.0	-20.9
C1404	5257.6	3155.9	1100.0	49.6	86.2	20.0
C1405	5335.2	3047.6	1099.4	494.0	99.2	-44.1
C1406	5179.4	3151.2	1118.7	39.2	90.5	1.6
C1407	5156.5	3088.4	1196.4	26.0	267.1	-28.9
C1408	5157.8	3144.0	1118.4	32.9	269.1	0.8
C1409	5139.1	3106.1	1197.7	14.0	88.8	1.8
C1410	5139.2	3106.4	1196.8	25.6	86.0	-29.1
C1411	5157.9	3150.4	1118.6	34.8	90.3	1.8
C1412	5138.9	3097.3	1197.7	9.5	267.2	2.7
C1413	5199.5	3132.7	1121.0	55.4	96.8	-55.8
C1414	5138.9	3097.7	1196.9	35.0	268.0	-45.2

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1415	5335.4	3048.1	1100.7	262.0	88.1	1.2
C1416	5164.8	3081.9	1197.3	54.0	105.2	-19.6
C1417	5220.1	3129.6	1121.8	56.6	103.2	50.7
C1418	5094.6	3095.7	1196.5	51.4	268.4	-27.9
C1419	5239.5	3126.5	1122.2	44.0	94.0	62.5
C1420	5335.3	3048.2	1101.4	192.0	90.1	25.0
C1421	5097.2	3148.6	1048.8	90.0	90.7	-29.0
C1422	5094.6	3095.4	1198.3	35.4	264.8	29.6
C1423	5094.5	3101.5	1197.8	16.2	89.6	25.2
C1424	5094.4	3101.6	1196.6	35.6	90.3	-28.9
C1425	5335.3	3048.1	1100.5	262.0	88.0	-19.1
C1426	4827.4	3071.0	1231.0	11.3	45.8	2.0
C1427	4827.7	3070.3	1231.0	15.9	18.0	1.6
C1428	4827.7	3070.0	1231.0	21.4	2.5	2.3
C1429	5097.2	3148.6	1049.1	81.0	91.2	-8.5
C1430	5335.3	3048.0	1100.1	361.5	88.7	-33.2
C1431	4825.1	3068.4	1230.9	13.7	309.3	2.2
C1432	4820.9	3071.9	1230.8	10.1	72.6	1.2
C1433	4819.3	3068.6	1230.8	13.4	256.1	0.1
C1434	4811.5	3073.4	1231.0	8.3	71.4	3.7
C1435	4827.7	3068.1	1231.0	21.0	-32.9	0.5
C1436	5117.8	3104.0	1197.5	12.2	90.7	0.5
C1437	5097.1	3148.5	1049.9	71.0	92.4	16.6
C1438	5257.5	3124.5	1122.4	59.0	93.5	42.9
C1439	5117.8	3103.4	1196.2	17.0	90.2	-53.1
C1440	5360.3	3030.3	1100.6	310.5	93.3	-12.8
C1441	5179.9	3165.1	1095.3	65.0	268.0	-18.1
C1442	5118.6	3098.6	1197.7	29.3	272.6	12.0
C1443	5113.7	3155.1	1085.5	69.0	88.2	-18.7
C1444	5118.7	3097.3	1196.7	30.0	270.1	-25.8
C1445	5360.3	3029.6	1100.2	347.6	93.9	-29.4
C1446	4730.1	3060.0	1132.1	121.8	55.9	1.4
C1447	5116.7	3204.4	1086.6	15.0	275.4	-47.4
C1448	5179.8	3165.1	1096.0	58.0	267.7	14.3
C1449	4729.9	3060.2	1134.7	82.0	147.8	42.0
C1450	5112.6	3138.3	1085.2	155.0	80.0	-46.2
C1451	4703.5	3054.0	1132.6	94.0	51.8	2.1
C1452	5180.4	3172.2	1096.5	13.0	91.3	24.1
C1453	5199.0	3159.4	1096.3	52.5	265.3	24.3
C1454	4702.4	3053.8	1133.6	99.3	69.6	19.8
C1455	5132.6	3098.4	1149.9	60.3	62.1	-9.5
C1456	4702.5	3054.0	1132.6	83.4	70.1	2.0
C1457	5199.0	3159.6	1095.3	56.0	267.1	-14.6
C1458	4702.5	3053.8	1134.2	98.6	64.7	39.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1459	5157.5	3138.5	1086.2	139.0	90.1	-38.4
C1460	5407.7	3018.1	1099.5	343.5	70.9	-15.3
C1461	5199.0	3159.7	1095.5	63.0	267.2	-35.7
C1462	4677.1	3065.7	1132.9	75.0	67.7	11.5
C1463	4677.1	3065.3	1132.2	80.5	67.9	29.6
C1464	5199.0	3164.8	1094.8	67.0	86.2	-43.2
C1465	5406.9	3018.9	1099.4	327.5	92.6	-15.2
C1466	4763.8	3037.8	1131.8	117.9	67.4	6.3
C1467	5157.5	3138.7	1086.6	83.0	91.2	-18.4
C1468	5292.5	3140.4	1096.0	90.0	86.6	-9.2
C1469	4804.4	3058.5	1132.5	139.2	68.0	25.1
C1470	4730.2	3059.7	1131.7	147.6	58.4	-14.7
C1471	5157.5	3138.9	1087.3	63.0	92.0	1.8
C1472	5219.1	3156.2	1094.9	72.5	267.0	-18.7
C1473	5138.7	3143.0	1087.0	78.5	89.8	-6.4
C1474	4804.3	3058.4	1133.4	86.5	68.2	49.3
C1475	4729.5	3060.0	1131.8	145.4	81.0	-12.4
C1476	5199.2	3165.8	1096.0	16.0	86.3	3.1
C1477	5257.6	3155.6	1096.4	50.5	89.2	-14.2
C1478	4804.2	3058.2	1130.9	136.0	69.6	-17.2
C1479	5138.7	3142.9	1086.6	79.5	89.3	-20.9
C1480	5276.4	3131.8	1095.9	86.0	99.1	-14.4
C1481	5165.0	3072.9	1199.2	26.5	287.6	2.3
C1482	4804.3	3058.3	1131.3	115.1	69.2	2.7
C1483	5138.7	3142.8	1086.3	94.0	88.0	-32.8
C1484	5210.0	3095.8	1021.8	48.0	110.2	3.0
C1485	4941.1	3103.2	1128.1	398.0	89.0	-74.8
C1486	5360.4	3030.5	1101.1	231.4	90.6	2.5
C1487	4963.3	2961.6	1276.7	18.0	269.9	-1.7
C1488	4980.2	2964.7	1278.6	195.0	273.0	0.2
C1489	5311.2	3174.2	1121.7	69.0	272.1	2.4
C1490	5138.6	3137.6	1086.9	21.1	263.7	-2.4
C1491	5276.3	3156.4	1122.8	70.0	271.1	31.1
C1492	5311.2	3174.7	1120.5	73.5	272.5	-31.1
C1493	5360.3	3030.6	1100.9	182.5	92.5	20.2
C1494	4703.5	3053.0	1134.2	106.0	66.7	54.8
C1495	5327.7	3120.5	1183.0	76.5	97.0	-12.3
C1496	5406.7	3019.3	1101.0	205.6	92.5	19.9
C1497	5330.3	3123.3	1183.0	18.0	186.6	-12.1
C1498	5310.2	3112.2	1182.7	80.0	92.1	-23.0
C1499	5309.4	3042.1	1099.8	139.9	267.8	-10.8
C1500	5222.6	3156.7	1095.3	90.0	94.9	-38.2
C1501	4798.3	3056.7	1129.6	399.3	265.0	-74.3
C1502	4731.9	3042.2	1134.3	99.0	66.1	50.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1503	4763.5	3037.4	1133.8	93.0	74.1	46.7
C1504	5199.7	3045.7	1036.8	364.0	98.0	-37.4
C1505	4802.2	3047.0	1133.4	95.0	73.0	57.2
C1506	5239.8	3147.4	1122.2	55.9	269.7	42.1
C1507	4727.6	2998.0	1210.0	31.0	-41.5	-90.0
C1508	5257.8	3144.1	1122.1	46.0	268.7	35.5
C1509	4726.8	2995.5	1210.3	26.0	-41.6	-90.0
C1510	3818.1	3020.1	1354.3	382.7	70.6	-46.0
C1511	4739.2	3036.1	1210.7	105.0	303.1	36.8
C1512	4729.6	3059.3	1131.1	191.5	59.7	-30.6
C1513	4729.2	3058.7	1131.1	269.3	67.7	-49.0
C1514	4785.8	2978.7	1211.1	22.0	-42.3	-90.0
C1515	3952.1	2990.3	1342.9	292.5	72.3	-44.8
C1516	4798.8	2976.5	1231.3	114.0	66.3	25.7
C1517	4691.4	3011.0	1210.7	19.0	-42.3	-90.0
C1518	5199.7	3045.3	1036.8	369.0	98.1	-43.9
C1519	4731.7	3037.0	1133.8	69.0	265.8	38.8
C1520	5291.7	3050.0	1098.6	423.6	95.6	-45.8
C1521	4740.4	3011.4	1211.7	58.0	239.5	44.3
C1522	4751.7	3031.7	1133.8	57.9	270.3	38.3
C1523	5032.8	3035.2	1290.3	67.0	91.9	-46.0
C1524	4702.9	3053.8	1131.1	164.6	69.7	-28.7
C1525	5291.5	3049.7	1098.4	472.7	102.7	-53.3
C1526	5199.8	3044.9	1036.7	433.9	100.1	-57.2
C1527	5286.9	3132.4	1122.5	61.0	76.3	24.9
C1528	4702.9	3053.6	1131.0	215.5	80.2	-42.5
C1529	5157.7	3144.2	1120.3	37.5	268.7	42.8
C1530	5155.3	3139.0	1086.4	650.0	96.8	-23.4
C1531	5029.0	3026.7	1291.4	64.0	142.1	1.3
C1532	5157.9	3144.6	1117.6	40.8	270.0	-33.7
C1533	5240.8	3139.7	1051.8	75.0	90.3	30.2
C1534	5240.6	3139.3	1050.3	81.0	100.7	4.8
C1535	5257.8	3115.8	1050.1	130.0	84.1	-9.3
C1536	4677.1	3065.6	1131.7	157.5	67.8	-29.7
C1537	5240.9	3139.1	1049.7	138.0	85.7	-29.6
C1538	5257.8	3115.7	1050.8	111.0	84.3	18.3
C1539	4702.9	3053.8	1131.0	240.0	71.1	-45.2
C1540	5181.3	3146.7	1143.9	21.0	88.5	0.2
C1541	5157.9	3144.0	1143.7	21.7	88.8	0.3
C1542	5257.9	3115.1	1049.7	150.2	85.1	-18.9
C1543	5241.0	3139.3	1050.0	105.5	90.3	-18.6
C1544	4677.0	3065.4	1131.3	240.5	69.1	-42.9
C1545	5200.1	3045.4	1037.1	454.0	82.7	-49.7
C1546	5276.5	3120.6	1050.6	113.5	89.3	8.6

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1547	5221.9	3116.1	1050.6	41.0	86.5	13.1
C1548	4723.7	3063.7	1210.8	115.0	262.0	38.0
C1549	5139.9	3142.9	1143.5	25.0	91.3	0.5
C1550	5276.4	3120.6	1049.9	147.0	90.6	-18.8
C1551	4648.2	3075.5	1131.2	166.5	68.4	-38.4
C1552	5118.0	3136.7	1143.3	23.0	91.9	2.2
C1553	5290.5	3129.6	1050.3	128.0	92.2	-3.0
C1554	4647.9	3074.8	1131.3	205.0	68.3	-48.8
C1556	5290.5	3129.6	1049.8	145.0	91.9	-19.8
C1557	4731.5	3062.4	1210.4	100.0	271.8	30.2
C1558	5304.8	3141.7	1049.6	155.0	93.5	-31.3
C1559	5200.0	3122.4	1049.3	108.0	86.2	-8.4
C1560	4807.8	2993.9	1210.7	29.0	303.6	0.4
C1561	4809.3	2995.6	1210.8	37.0	-28.7	3.5
C1563	5200.0	3122.3	1050.5	91.0	87.4	8.0
C1564	5304.8	3142.0	1050.8	112.5	91.9	12.5
C1565	5199.6	3122.1	1051.4	102.0	88.6	28.8
C1566	5304.8	3141.9	1050.0	130.5	90.9	-13.5
C1567	5098.6	3201.2	1087.8	24.0	292.8	-1.1
C1568	5221.9	3116.1	1050.6	109.0	89.0	14.6
C1569	5071.6	3201.6	1087.9	18.0	272.1	0.7
C1570	5047.8	3019.4	1054.8	408.0	268.4	-79.4
C1571	5098.6	3201.5	1086.3	26.0	-42.3	-90.0
C1572	5222.0	3116.0	1049.6	115.0	86.3	-8.2
C1573	5026.0	3193.1	1087.2	70.7	129.8	-63.6
C1574	5276.4	3120.1	1049.7	196.0	89.7	-37.2
C1575	5199.5	3043.5	1037.2	617.0	75.7	-65.2
C1576	5222.0	3115.6	1049.6	153.0	88.6	-20.8
C1578	5257.2	3123.4	1096.5	23.0	268.1	2.5
C1580	5201.0	3044.1	1037.1	561.0	68.6	-51.3
C1581	5034.0	3033.7	1290.3	53.0	271.1	-28.1
C1582	5304.8	3142.5	1052.4	88.0	92.7	35.9
C1583	5201.2	3129.8	1021.4	188.2	93.2	-40.7
C1584	5335.7	3144.1	1051.6	113.0	90.9	19.0
C1585	5239.7	3120.3	1022.8	175.0	91.8	-26.8
C1586	5041.0	3209.1	1014.6	11.0	277.0	0.9
C1587	5049.5	3206.5	1014.5	8.0	272.6	0.3
C1588	5048.7	3212.1	1014.7	9.0	91.3	1.2
C1589	5060.7	3204.2	1014.1	6.0	274.3	0.4
C1590	5060.8	3208.4	1014.0	10.1	92.0	0.6
C1591	5071.5	3213.9	1013.5	10.3	100.8	-1.3
C1592	5085.2	3212.5	1013.5	15.2	278.9	-3.4
C1593	5083.2	3219.6	1013.7	7.0	98.0	-1.0
C1594	5094.4	3208.8	1013.4	8.0	268.6	0.9

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1595	5094.5	3215.2	1013.4	7.0	88.6	1.0
C1596	5104.9	3207.0	1013.1	6.5	272.1	0.7
C1597	5105.2	3213.0	1013.2	9.0	92.4	0.5
C1598	5116.9	3207.4	1013.1	8.7	267.5	-1.5
C1599	5128.3	3214.5	1012.8	15.0	270.6	0.7
C1600	5139.4	3204.2	1012.3	8.3	271.2	-1.1
C1601	5147.1	3200.7	1012.0	6.0	270.7	0.1
C1602	5147.2	3207.4	1012.1	12.0	84.7	0.3
C1603	5157.4	3199.4	1012.3	13.0	270.2	0.8
C1604	5158.1	3205.1	1012.1	14.0	86.9	0.3
C1605	5168.7	3200.6	1011.9	13.0	269.6	0.7
C1606	5168.7	3206.2	1012.0	13.0	91.1	-1.6
C1607	5335.8	3144.1	1050.3	156.0	90.3	-13.6
C1608	4931.1	3081.7	988.4	208.0	90.4	-49.4
C1609	5335.9	3143.9	1049.7	170.0	86.8	-29.0
C1610	4423.6	3738.4	1470.5	397.0	234.9	-52.1
C1611	4931.1	3081.1	988.4	252.0	91.0	-69.4
C1612	4823.8	3219.4	1338.3	135.6	233.0	-32.6
C1613	5104.8	3121.7	1114.2	32.0	121.8	0.6
C1614	5336.0	3143.9	1049.7	181.0	68.8	-19.3
C1615	4943.1	3079.5	987.9	421.0	65.7	-90.0
C1616	5221.2	3090.2	1021.2	56.0	56.5	-28.6
C1617	5220.7	3089.5	1021.1	101.0	53.2	-55.4
C1618	4824.4	3218.9	1338.1	78.0	263.1	-34.3
C1619	5335.8	3144.1	1051.6	134.0	71.8	20.8
C1620	5360.1	3029.6	1099.8	400.0	92.8	-43.1
C1621	5322.7	3143.3	1049.7	149.0	91.5	-44.1
C1622	5322.7	3143.3	1050.2	170.0	91.1	-24.5
C1623	4862.9	3042.2	1272.7	89.8	240.4	-29.4
C1624	5224.4	3165.5	1096.8	18.0	90.5	25.3
C1625	5157.2	3080.6	1014.0	282.0	90.9	-33.0
C1626	4979.4	3043.7	993.8	33.0	90.8	-18.6
C1627	4979.4	3043.3	993.2	202.0	91.7	-42.2
C1628	4876.3	3037.0	1257.5	87.0	245.4	-28.8
C1629	4717.7	3002.1	1210.2	38.5	67.7	-46.0
C1630	5157.2	3080.4	1014.2	331.0	90.2	-54.0
C1631	4797.9	2999.8	1209.5	37.0	255.8	-34.4
C1632	4775.0	2983.2	1211.2	420.0	67.7	-32.0
C1633	5048.8	3021.7	1054.5	657.8	89.0	-79.6
C1634	4979.4	3038.3	933.4	383.0	88.1	-62.3
C1635	5322.7	3143.5	1052.3	101.0	91.2	28.4
C1636	5335.8	3144.0	1051.9	175.0	55.2	15.2
C1637	4977.3	3041.2	993.1	277.5	151.9	-50.0
C1639	5262.1	3124.7	1311.7	223.5	86.8	-35.3

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1640	5335.6	3044.4	1099.2	77.8	89.3	-64.1
C1641	4768.5	3009.3	1209.7	42.0	247.3	-28.1
C1642	4976.8	3041.4	994.8	150.0	151.9	14.2
C1643	4744.0	3012.4	1209.0	30.0	255.9	-36.8
C1644	4982.5	2965.2	1280.0	15.0	273.6	-42.2
C1645	5335.6	3044.4	1335.0	23.0	89.3	-64.1
C1646	5000.3	2968.3	1280.0	21.0	270.0	-37.1
C1647	4982.5	2964.8	1282.8	38.0	270.4	39.5
C1648	5242.8	3112.5	1051.2	8.0	269.7	2.0
C1649	5242.8	3112.5	1049.8	18.0	269.7	-74.0
C1650	5335.0	3044.9	1099.2	638.0	90.1	-64.8
C1651	5221.1	3133.0	1147.0	16.0	273.4	45.7
C1652	5221.9	3133.0	1143.9	13.0	273.8	-26.8
C1653	5221.9	3133.7	1143.5	24.0	275.1	-53.3
C1654	5208.9	3135.8	1146.7	23.0	259.3	39.1
C1655	5210.2	3136.2	1144.0	19.0	267.3	-25.9
C1656	5210.0	3136.4	1143.7	26.0	267.4	-50.4
C1657	5199.6	3134.4	1143.8	18.0	277.1	-28.3
C1658	5199.3	3134.3	1143.4	24.0	277.1	-50.8
C1659	5187.6	3140.6	1146.0	54.0	262.6	33.6
C1660	5189.9	3140.1	1144.2	36.0	263.2	-15.1
C1661	5190.0	3140.5	1143.7	32.0	265.7	-37.6
C1662	5180.7	3140.5	1145.5	54.0	265.4	30.7
C1663	5179.6	3140.4	1143.5	33.0	270.5	-18.9
C1664	5179.6	3140.7	1142.8	15.0	270.0	-39.8
C1665	5166.6	3138.3	1145.4	19.0	270.0	30.5
C1666	5166.8	3139.3	1143.0	29.6	268.3	-19.0
C1667	5166.8	3139.3	1142.9	27.0	271.1	-40.1
C1668	5157.5	3137.7	1144.0	27.0	268.7	8.0
C1669	5148.5	3137.2	1145.4	30.0	268.0	28.5
C1670	5148.7	3137.1	1143.1	29.0	270.4	-24.5
C1671	5148.5	3137.5	1152.5	31.0	268.8	-50.0
C1672	5223.4	3147.4	1119.4	30.0	275.3	-16.1
C1673	5223.1	3147.2	1119.1	40.0	279.3	-31.4
C1674	5212.2	3147.9	1119.0	28.6	274.1	-16.5
C1675	5212.2	3148.0	1118.5	38.0	272.6	-32.8
C1676	5212.1	3148.5	1118.5	30.0	271.7	-52.5
C1677	5199.0	3148.2	1119.2	36.0	269.5	-15.7
C1678	5199.0	3148.6	1118.8	40.0	270.6	-32.0
C1679	5199.0	3148.9	1118.5	41.5	270.7	-45.3
C1680	5189.3	3144.6	1118.3	34.0	266.7	-30.5
C1681	5168.8	3147.3	1118.4	46.0	269.4	-17.8
C1682	5168.7	3147.2	1117.8	39.0	266.8	-34.8
C1683	5168.8	3147.5	1117.3	29.6	267.0	-47.3

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1684	5157.7	3144.1	1120.3	37.0	270.9	28.5
C1685	5156.9	3144.0	1117.4	36.5	263.5	48.1
C1686	5157.0	3143.7	1117.5	28.0	264.3	-48.3
C1687	5146.7	3138.0	1117.6	19.0	263.8	-25.8
C1688	5146.9	3139.0	1117.4	40.0	260.4	-51.1
C1689	5147.9	3138.5	1117.3	25.0	269.7	-67.0
C1690	5155.2	3145.8	1117.8	53.0	269.7	-78.0
C1691	5138.9	3138.7	1090.9	35.6	266.7	58.6
C1692	5138.3	3137.7	1088.7	32.0	272.3	37.2
C1693	5248.4	3147.3	1095.3	32.0	258.8	-36.6
C1694	5278.7	3125.0	1096.2	19.0	271.5	-24.8
C1695	5266.7	3149.8	1096.4	38.0	269.1	-37.3
C1696	5127.8	3134.2	1089.6	14.0	264.1	53.3
C1697	5129.0	3133.7	1088.3	15.0	271.2	38.2
C1698	5248.4	3147.0	1095.6	39.0	253.8	-18.3
C1699	5284.0	3157.5	1120.4	53.0	270.7	-15.9
C1700	5258.0	3149.1	1097.5	42.8	270.9	13.7
C1701	4648.0	3075.3	1131.1	144.0	89.1	-43.5
C1702	4648.0	3074.8	1131.2	168.0	91.1	-57.2
C1703	4865.5	3047.2	1273.9	132.0	80.1	2.3
C1704	5179.5	3140.7	1142.8	21.0	264.8	-40.0
C1705	5336.0	3191.7	1125.0	36.0	271.2	60.1
C1706	5293.7	3001.1	1451.4	69.0	270.6	-20.2
C1707	5209.5	3148.1	1118.8	44.0	269.7	-47.0
C1708	5336.1	3191.5	1123.8	36.0	274.6	-37.6
C1709	5293.7	3001.0	1451.8	83.0	270.1	-4.8
C1710	5322.5	3186.9	1124.6	33.0	262.3	59.2
C1711	5293.7	3001.0	1452.2	87.0	270.8	9.9
C1712	5322.7	3186.8	1123.7	18.0	267.5	46.4
C1713	5046.1	3022.9	1054.5	373.0	157.9	-57.0
C1714	5322.5	3181.4	1125.3	24.0	92.3	62.6
C1715	5293.7	3001.1	1452.6	54.0	270.9	23.1
C1716	5322.5	3181.6	1124.4	24.0	86.2	26.9
C1717	5310.1	3181.1	1124.9	17.6	79.6	68.6
C1718	5312.2	2997.1	1452.2	24.0	266.3	17.6
C1719	5312.1	2997.0	1451.6	69.0	265.7	0.2
C1720	5264.4	3159.9	1120.3	49.0	268.5	-9.5
C1721	5258.4	2999.9	1449.3	90.0	269.7	-17.3
C1722	5266.7	3159.7	1119.9	57.0	269.0	-19.8
C1723	5258.5	2999.7	1449.7	84.0	271.6	-4.6
C1724	5238.8	3003.9	1448.6	95.5	273.1	-10.9
C1725	5238.8	3147.4	1119.4	38.0	264.5	-26.6
C1726	5275.1	3156.6	1120.3	51.0	270.4	-18.1
C1727	5258.4	2999.8	1450.1	89.0	270.0	7.9

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1728	5238.6	3147.4	1119.8	36.0	267.1	-16.6
C1729	5258.4	2999.4	1450.6	89.0	269.5	16.5
C1730	5041.8	3077.7	973.4	172.0	163.9	-17.1
C1731	5281.3	3136.1	1073.7	24.0	281.5	-23.7
C1732	5292.5	3125.8	1073.3	28.6	91.3	-27.6
C1733	5281.3	3136.1	1073.3	29.0	279.7	-43.0
C1734	5292.5	3125.7	1073.3	25.6	89.4	-47.1
C1735	5291.4	3125.6	1076.7	48.0	91.0	46.7
C1736	5283.8	3122.7	1076.4	39.6	86.5	50.5
C1737	5281.2	3135.7	1074.9	33.6	281.8	18.5
C1738	5276.7	3137.6	1073.5	30.0	268.5	-30.0
C1739	5283.8	3122.6	1076.3	26.0	90.3	31.9
C1740	5238.7	3004.0	1449.1	92.0	271.4	4.4
C1741	5041.7	3077.7	973.5	200.0	163.2	-38.2
C1742	5283.9	3122.7	1074.0	36.0	89.1	2.1
C1743	5276.7	3137.5	1073.9	35.0	269.7	-16.2
C1744	5284.0	3122.6	1073.3	37.6	89.3	-20.1
C1745	5276.7	3137.8	1075.0	33.6	269.3	18.2
C1746	5283.9	3122.4	1073.3	34.0	89.3	-31.2
C1747	5261.2	3133.7	1076.2	27.6	84.3	51.2
C1748	5257.8	3129.5	1073.6	36.0	267.8	-37.8
C1749	5238.2	3003.8	1448.7	76.0	256.3	-7.5
C1750	5235.0	3133.5	1074.8	9.0	270.4	2.6
C1751	5276.0	3120.3	1076.1	40.0	84.2	29.3
C1752	5266.5	3116.9	1073.3	34.0	90.1	-21.2
C1753	5248.5	3130.8	1073.8	36.0	269.9	-36.9
C1754	5052.2	3100.4	973.7	232.0	155.7	-38.1
C1755	5248.4	3130.4	1074.1	29.0	268.1	-19.7
C1756	5248.4	3130.4	1075.4	22.0	267.7	18.5
C1757	5239.5	3132.1	1073.9	39.0	267.1	-36.7
C1758	5275.7	3120.7	1076.5	35.0	92.2	-20.3
C1759	5239.5	3132.0	1074.3	35.0	265.9	-21.1
C1760	5275.7	3120.6	1073.1	37.0	89.9	-30.4
C1761	5257.4	3120.8	1072.9	32.0	92.8	-40.0
C1762	5249.3	3119.2	1072.7	30.0	88.8	-39.4
C1763	5266.5	3116.6	1076.8	30.0	91.2	49.7
C1764	5257.3	3121.4	1073.2	28.0	91.7	-25.2
C1765	5249.3	3119.2	1073.2	25.0	85.5	-24.7
C1766	5249.3	3119.3	1073.5	15.0	89.2	-7.8
C1767	5239.5	3119.0	1073.4	32.6	87.2	-25.4
C1768	5230.4	3158.0	1095.9	38.5	267.8	-21.3
C1769	5266.9	3133.1	1074.0	35.6	268.2	-30.8
C1770	5248.6	3113.1	1073.8	7.0	268.3	1.4
C1771	5230.4	3157.9	1096.1	53.0	271.5	-12.2

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1772	5266.9	3132.7	1073.7	59.0	268.6	-22.9
C1773	5239.6	3138.0	1074.7	4.1	88.2	2.5
C1774	5248.6	3136.8	1074.7	4.0	89.4	0.0
C1775	4864.9	3047.3	1274.3	134.0	82.6	15.6
C1776	5239.6	3154.6	1096.1	46.0	260.5	-12.3
C1777	5248.5	3125.7	1095.6	15.0	268.5	-23.6
C1778	5231.4	3120.3	1074.4	18.0	90.2	-25.5
C1779	4880.7	3042.7	1274.8	125.0	66.8	29.3
C1780	5267.0	3120.2	1095.8	16.8	268.4	-26.6
C1781	5230.6	3120.8	1074.3	24.0	92.3	-42.6
C1782	5247.3	3138.3	1095.2	19.2	269.7	-51.0
C1783	5277.3	3000.5	1449.8	75.0	272.1	-10.7
C1784	5283.4	3163.3	1124.1	37.6	47.4	61.5
C1785	4787.0	3094.6	1193.0	128.6	64.9	14.8
C1786	5097.3	3146.1	1048.0	323.0	163.9	-53.9
C1787	5256.0	3149.0	1096.2	42.6	270.0	-12.1
C1788	5284.7	3163.8	1122.2	44.0	58.4	40.8
C1789	5248.6	3157.5	1119.5	52.0	268.3	-22.1
C1790	5248.6	3157.5	1119.5	4.0	268.3	-10.8
C1791	5255.9	3149.2	1095.7	50.0	267.8	-26.2
C1792	4864.5	3047.4	1274.7	126.0	78.8	20.2
C1793	5277.3	3000.6	1450.2	88.0	270.2	2.5
C1794	4786.9	3094.4	1192.4	104.0	66.6	-6.2
C1795	5159.4	2993.5	1326.3	24.2	275.2	-21.7
C1796	4864.5	3047.3	1274.7	136.0	76.2	26.5
C1797	5277.3	3000.9	1450.9	134.0	270.1	15.5
C1798	5138.4	3027.0	1289.0	35.0	269.4	-16.1
C1799	5147.5	3024.9	1289.3	31.1	270.4	-20.3
C1800	5096.8	3146.3	1048.1	263.0	165.1	-35.9
C1801	5162.7	3032.7	1289.3	39.6	284.0	-15.9
C1802	5149.3	3010.5	1308.2	24.0	268.4	-26.2
C1803	4980.8	3129.1	983.1	134.0	156.4	-47.2
C1804	4864.4	3047.3	1272.9	131.0	87.7	-13.6
C1805	5238.9	3004.0	1447.9	99.0	254.8	-19.5
C1806	5163.7	3015.5	1308.4	42.5	282.8	-17.9
C1807	4746.9	2991.2	1212.0	41.1	71.7	13.1
C1808	5159.1	3005.8	1307.9	25.5	272.5	-24.2
C1809	4980.1	3129.4	983.7	112.0	155.3	-21.3
C1810	4759.7	2984.0	1212.7	57.6	66.6	38.1
C1811	5041.1	3077.9	974.5	139.0	167.0	-4.8
C1812	4759.7	2984.1	1212.6	44.6	69.2	20.8
C1813	5156.4	3015.4	1288.9	24.0	274.7	-20.6
C1814	4758.1	2984.6	1213.9	59.5	66.9	52.8
C1815	5148.4	3143.0	1143.8	12.0	90.1	1.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1816	4885.7	3140.4	1343.7	32.0	243.2	-41.0
C1817	5181.5	3146.4	1143.0	34.0	84.8	-34.3
C1818	4773.9	2983.1	1214.8	56.5	68.6	53.6
C1819	5189.2	3146.3	1144.4	15.0	85.9	1.6
C1820	4774.0	2983.2	1213.6	50.6	71.4	21.2
C1821	5189.3	3146.3	1143.3	31.9	84.2	-34.6
C1822	4980.0	3129.4	984.0	17.0	155.1	-12.0
C1823	4789.6	2980.6	1213.5	48.6	71.9	28.6
C1824	4980.4	3129.2	983.2	117.0	155.9	-36.2
C1825	5128.9	3141.3	1143.2	13.3	92.5	3.5
C1826	4990.7	2999.2	993.9	171.0	157.5	-31.4
C1827	4788.8	2980.8	1214.9	40.5	65.4	50.0
C1829	5168.9	3145.5	1143.7	11.7	90.0	2.4
C1830	4788.1	2980.3	1215.9	63.1	67.7	64.9
C1831	5168.9	3145.4	1142.8	17.7	90.8	-32.3
C1832	5042.5	3079.5	974.8	141.0	166.0	5.0
C1833	4990.3	2999.4	994.1	145.5	156.8	-22.1
C1834	5197.8	3144.5	1144.5	17.4	95.3	1.4
C1835	4759.0	2985.3	1210.8	39.1	66.1	-17.6
C1836	4744.9	2990.2	1210.7	30.6	66.0	-19.5
C1837	5208.7	3141.6	1114.0	11.0	74.1	1.1
C1838	4787.1	3094.6	1193.1	100.0	67.7	34.0
C1839	5266.3	3165.6	1119.9	26.8	80.0	-22.5
C1840	4990.3	2999.4	994.7	154.0	155.9	-7.4
C1841	5257.7	3164.5	1119.7	21.0	89.8	-23.1
C1842	5042.3	3079.6	975.2	128.0	163.7	15.0
C1843	5248.9	3163.2	1119.2	48.5	88.8	-29.7
C1844	5000.9	2968.2	1282.8	27.0	269.1	34.1
C1845	5231.0	3163.8	1118.8	37.2	88.9	-28.0
C1846	5223.1	3163.3	1118.6	24.6	98.2	-31.0
C1847	4788.6	3094.9	1195.3	125.5	61.8	45.4
C1848	5210.1	3156.9	1118.8	29.0	93.5	-21.1
C1849	4958.8	3147.4	1343.0	76.0	247.9	-8.9
C1850	5199.7	3155.2	1118.2	36.5	86.6	-26.4
C1851	5187.2	3150.1	1118.2	33.3	84.6	-24.0
C1852	4977.0	3038.8	993.4	137.0	148.5	-38.0
C1853	5187.2	3150.2	1118.9	23.6	83.2	1.8
C1854	4958.8	3147.4	1342.9	80.0	248.8	-22.9
C1855	5179.7	3151.1	1117.9	35.2	87.9	-25.2
C1856	5168.7	3153.5	1118.7	19.8	89.0	1.8
C1857	5248.9	3163.3	1120.0	16.4	88.2	0.1
C1858	4958.8	3147.3	1344.0	69.0	245.0	10.6
C1859	5266.2	3165.7	1120.4	18.8	88.9	0.7
C1860	4976.8	3038.9	993.6	128.6	150.9	-27.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1861	4812.8	3086.0	1354.7	152.0	68.7	-49.0
C1862	5335.5	3191.3	1121.2	20.0	274.3	-29.0
C1863	4917.3	3140.2	1343.4	56.5	248.6	-18.9
C1864	4753.3	3092.2	1192.8	133.0	66.0	2.8
C1865	4976.5	3039.0	994.0	98.6	151.7	-14.6
C1866	5299.4	3176.9	1120.0	30.0	98.9	-24.1
C1867	4917.2	3139.5	1344.6	40.0	247.8	14.8
C1868	5257.8	3150.5	1119.3	31.0	90.9	-22.6
C1869	4990.6	2998.5	993.7	168.0	179.6	-37.8
C1870	5248.6	3154.8	1119.0	47.0	93.4	-29.3
C1871	5257.5	3150.6	1123.0	23.0	93.7	52.1
C1872	4725.7	3102.6	1192.3	143.6	65.8	-8.9
C1873	4812.8	3085.9	1354.6	164.0	67.8	-54.1
C1874	5335.7	3184.6	1101.5	37.0	88.9	3.2
C1875	5335.6	3184.7	1101.9	40.0	90.5	18.6
C1876	5322.5	3182.5	1101.2	48.0	95.8	2.3
C1877	4982.4	2964.7	1280.4	7.0	273.8	36.0
C1878	5322.5	3182.6	1102.1	41.0	96.4	26.5
C1879	5309.4	3181.0	1101.1	44.0	91.2	3.4
C1880	5309.7	3181.2	1102.0	38.7	89.0	29.9
C1881	4806.4	3092.6	1354.8	155.0	68.8	-34.8
C1882	5230.7	3152.5	1118.8	40.0	89.1	-29.9
C1883	5309.5	3180.7	1105.3	33.7	96.7	64.8
C1884	4725.8	3102.7	1193.4	100.1	68.2	18.5
C1886	5276.4	3164.7	1120.2	31.3	90.8	-19.9
C1887	5291.5	3182.1	1102.1	24.0	90.5	32.9
C1888	5016.6	2996.9	1443.3	78.0	270.4	-5.3
C1889	5283.9	3163.8	1120.1	35.0	91.1	-17.0
C1890	5300.3	3195.5	1102.0	37.7	268.6	25.3
C1891	5290.8	3192.1	1101.8	41.0	268.9	20.3
C1892	5309.4	3180.7	1100.2	55.0	90.9	-25.9
C1893	5283.8	3163.9	1120.6	32.6	92.4	1.5
C1894	4743.5	3093.6	1193.7	88.0	68.3	22.8
C1895	5016.6	2996.9	1441.5	66.0	269.7	-36.0
C1896	5300.2	3182.1	1100.1	48.0	90.5	-20.8
C1897	5284.8	3164.1	1121.5	21.7	97.8	33.4
C1898	5300.2	3182.2	1100.0	66.7	90.7	-31.4
C1899	5283.5	3163.3	1124.1	35.8	89.2	59.3
C1900	4743.4	3093.8	1191.9	112.6	70.4	-18.3
C1901	4969.7	2963.2	1279.0	45.6	255.7	47.5
C1902	5017.1	2996.8	1443.8	83.5	270.1	11.8
C1903	4812.7	3085.6	1354.8	182.0	65.9	-59.5
C1904	5267.2	3155.2	1097.5	75.2	91.0	-14.5
C1905	5265.9	2960.8	1399.3	12.6	98.8	44.5

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1906	4743.4	3093.8	1191.8	137.6	71.1	-30.6
C1907	5265.3	2957.3	1399.2	9.0	293.3	37.7
C1908	5247.3	3142.9	1144.5	18.8	87.6	2.4
C1909	5266.9	3155.0	1099.6	25.4	94.7	34.9
C1910	5138.7	3056.2	1430.1	76.8	270.4	4.4
C1911	5247.6	3142.9	1143.5	35.0	90.1	-31.8
C1912	5240.3	3142.7	1144.4	18.8	86.9	3.5
C1913	5267.3	3155.2	1097.5	96.0	85.6	-29.4
C1914	5117.7	3062.2	1429.8	83.0	271.0	4.5
C1915	5230.6	3142.9	1144.6	20.6	88.8	2.4
C1916	4698.0	3116.4	1192.2	74.0	64.0	-27.3
C1917	5230.7	3142.7	1143.5	35.7	89.8	-30.0
C1918	5230.1	3143.4	1146.1	13.6	88.1	42.1
C1919	5117.6	3061.9	1430.4	81.0	269.7	21.4
C1920	5221.7	3140.8	1144.5	20.6	93.7	2.1
C1921	5221.5	3140.6	1143.6	24.4	92.1	-27.1
C1922	5210.6	3142.1	1146.3	15.0	87.3	44.0
C1923	5099.6	3067.2	1428.3	84.6	269.1	6.6
C1924	5209.6	3141.7	1144.2	17.6	89.4	2.9
C1925	5209.6	3141.7	1144.1	23.6	86.8	-24.4
C1926	5322.1	3203.3	1054.6	47.5	89.7	33.5
C1927	4725.7	3102.5	1192.0	128.0	68.9	-30.1
C1928	5209.7	3141.5	1143.4	40.0	82.8	-41.8
C1929	4981.9	3041.6	1414.7	85.7	269.5	22.0
C1930	5309.8	3198.8	1051.9	73.0	89.8	-21.4
C1931	5248.1	3137.7	1146.6	15.0	267.5	51.3
C1932	5248.2	3142.8	1146.2	11.6	83.1	41.4
C1933	5250.3	3155.6	1097.9	19.5	85.5	32.9
C1934	5239.2	3142.6	1146.6	11.6	83.3	51.4
C1935	5249.9	3155.5	1095.6	83.0	83.0	-26.9
C1936	5240.3	3142.4	1143.2	17.6	82.6	-46.7
C1937	4914.9	3030.5	1406.6	55.6	270.4	18.4
C1938	5197.1	3144.7	1143.9	26.6	94.9	-24.7
C1939	5300.2	3182.1	1099.9	23.7	88.6	-49.5
C1940	5197.1	3144.6	1143.3	14.6	74.7	49.7
C1941	5191.5	3146.1	1143.7	12.6	94.0	53.0
C1942	4990.7	2971.1	1443.9	29.6	269.3	-16.5
C1943	5284.0	3173.8	1100.2	44.8	89.7	-25.0
C1944	5191.9	3146.1	1140.1	26.6	89.6	-60.2
C1945	5071.7	3065.4	1425.0	2.0	269.1	8.4
C1946	5181.4	3146.1	1143.3	8.9	82.7	51.1
C1947	5168.4	3145.4	1142.5	11.6	85.8	43.1
C1948	5167.1	3145.3	1142.8	29.6	81.5	-53.0
C1949	5284.0	3173.8	1099.4	63.0	87.4	-37.0

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1950	5036.8	3051.1	1421.9	69.0	272.1	22.9
C1951	4999.8	2971.8	1444.2	13.0	272.8	-7.1
C1952	5230.6	3152.6	1118.8	29.6	90.3	-48.1
C1953	5249.4	3147.9	1121.3	14.6	273.9	33.9
C1954	5266.6	3160.0	1122.4	29.6	274.8	39.2
C1955	5037.4	3051.1	1421.7	73.0	293.1	10.2
C1956	5266.5	3159.7	1121.2	23.6	270.1	14.7
C1957	5261.6	3154.8	1145.9	37.5	273.3	34.6
C1958	5231.7	3158.4	1121.8	35.0	269.5	39.9
C1959	5261.5	3154.7	1145.9	29.6	294.1	35.1
C1960	5199.1	3156.3	1120.3	14.6	89.4	20.5
C1961	4999.8	2971.8	1444.2	87.5	272.8	-7.1
C1962	5261.6	3154.7	1145.9	35.0	315.6	27.5
C1963	5276.8	3149.8	1143.9	23.6	85.8	-10.4
C1964	5179.5	3150.9	1120.5	26.6	91.9	39.6
C1965	5276.8	3149.8	1143.8	28.0	88.3	-36.4
C1966	5291.8	3050.9	1101.2	122.5	91.6	34.7
C1967	5268.7	3145.3	1143.9	27.0	88.7	-31.3
C1968	5010.4	2986.9	1441.0	79.5	269.4	-9.1
C1968	5245.2	3136.6	1144.9	7.0	235.5	16.2
C1970	5245.5	3137.1	1146.4	10.5	238.4	48.7
C1971	5189.7	3170.5	1049.5	92.0	90.3	-32.5
C1972	5010.4	2987.1	1443.5	55.5	268.8	-27.2
C1973	5322.4	3219.6	1053.7	33.0	267.1	23.4
C1974	5029.4	3010.4	1443.6	65.0	270.0	1.4
C1975	5290.9	3051.2	1100.5	145.5	90.6	25.2
C1976	5248.3	3156.6	1122.6	36.0	267.9	39.9
C1977	5029.4	3010.4	1443.2	63.5	271.0	-14.9
C1978	5322.4	3219.5	1052.1	42.0	268.2	-32.9
C1979	5258.4	3104.8	1022.3	169.6	86.3	-35.3
C1980	5029.4	3010.4	1442.7	47.5	270.5	-30.0
C1981	5309.9	3217.5	1053.7	42.5	270.5	34.9
C1982	5029.3	3010.3	1444.0	88.5	270.0	13.6
C1983	5302.9	3211.4	1054.8	36.0	268.6	44.3
C1984	5029.5	3010.4	1442.9	73.5	276.4	-25.1
C1985	5302.7	3210.6	1051.7	27.5	270.8	-22.0
C1986	5029.5	3010.7	1442.6	55.0	274.0	-39.2
C1987	5301.9	3217.0	1051.6	42.6	89.6	-41.4
C1988	4824.5	3224.0	1338.2	6.0	264.0	-35.2
C1989	5029.6	3010.4	1443.5	106.0	279.3	-5.3
C1990	5284.2	3210.5	1052.0	38.0	90.1	0.2
C1991	4787.8	3001.2	1265.2	15.0	64.7	0.5
C1992	4787.4	3000.6	1264.1	17.7	67.7	-40.0
C1993	4796.0	2994.2	1264.9	17.8	68.7	0.4

ELEMENTOS LIMITED

Hole No	North	East	Elevation	Length	Azimuth	Dip
C1994	4796.0	2994.1	1263.9	29.8	67.0	-39.5
C1995	5029.5	3010.3	1443.8	112.5	274.0	5.0
C1996	4803.4	2993.5	1265.0	16.0	68.6	0.0
C1997	5274.6	3106.5	1022.5	40.0	91.2	-43.2
C1998	4803.2	2992.9	1264.1	25.0	67.4	-40.0
C1999	5274.6	3106.5	1022.5	40.0	92.0	-27.9
C2000	4831.7	2983.0	1265.6	28.0	69.8	1.4
C2001	4839.6	2977.9	1265.8	27.8	70.0	-1.1
C2002	5258.2	3157.0	1023.1	106.0	82.8	-41.9
C2003	4840.2	2977.0	1265.8	35.0	33.7	-1.0
C2004	5029.4	3010.3	1444.1	108.0	273.9	14.6
C2005	5041.5	3057.0	1422.4	12.0	289.9	26.5
C2006	5041.5	3056.8	1422.4	52.6	289.3	27.8
C2007	5256.5	3150.6	1023.0	48.0	261.3	-50.6
C2008	5284.3	3204.6	1054.5	55.7	272.2	48.6
C2009	5209.9	3155.9	1078.5	67.0	84.8	-21.8
C2010	5010.4	2987.6	1443.3	67.7	270.2	-43.7
C2011	5252.0	3209.2	1051.9	57.0	262.2	20.5
C2012	5188.6	3137.7	1082.0	80.5	89.2	-18.1
C2013	5179.7	3130.0	1083.4	86.6	88.8	-17.5
C2014	5010.6	2987.5	1443.2	65.6	270.6	-54.5
C2015	5010.6	2987.6	1443.1	65.6	267.4	-69.5
C2016	5064.3	3033.6	1441.7	45.0	295.3	19.3
C2017	5102.9	3045.7	1442.8	56.6	270.5	20.8
C2018	4875.2	2967.6	1423.2	39.6	272.8	3.0
C2019	5181.9	3080.2	1398.1	113.6	266.6	25.2
C2020	4912.7	2968.0	1425.5	20.0	297.7	21.0
C2021	4912.6	2967.9	1425.5	10.8	297.7	5.0
C2022	4875.7	2968.1	1422.3	41.7	273.9	-19.6
C2023	4863.2	2966.2	1422.9	39.9	264.3	-7.7
C2024	4893.3	2966.4	1423.4	49.9	276.8	-3.8
C2025	4819.0	3141.5	1070.5	86.6	89.4	-19.8
C2026	4819.0	3141.5	1070.4	126.0	87.6	-49.2
C2028	4806.6	3154.9	1071.0	120.0	88.5	-44.7
C2030	4960.0	2977.7	1431.6	83.0	267.9	8.3
C2031	4968.7	2979.9	1433.3	101.0	278.8	12.8
C2032	5020.0	2934.8	1473.1	16.0	267.5	-35.2
C2033	5040.7	2944.6	1476.8	27.0	267.7	-40.0
C2034	5042.6	2938.9	1479.0	34.5	266.5	8.1
C2035	4998.4	2929.0	1469.9	58.8	271.7	-50.0
C2036	4998.4	2927.6	1470.1	38.5	274.0	-24.5
C2037	4964.1	3145.0	1344.5	37.0	261.3	21.1
C2038	4963.8	3145.1	1344.5	36.5	256.8	19.1
C2039	4963.8	3145.0	1344.5	32.0	239.2	19.0
C2040	4948.1	3147.9	1344.4	61.0	250.9	18.5

Table 12Intersections in tin copper lens B South.

Hole No	Depth From m	Depth To m	Length m	% Sn	% Cu
C0097	168.1	182.6	14.5	0.59	0.63
C0310	224.8	260.2	35.4	0.72	0.29
C0319	183.7	197.7	14.0	1.04	0.28
C0403	49.8	66.7	16.9	2.16	1.15
C0404	83.2	118.0	34.8	0.36	0.31
C0406	48.3	49.2	0.9	1.59	0.34
C0479	0.0	2.3	2.3	0.22	0.05
C0506	12.8	14.9	2.2	1.04	0.27
C0540	84.4	102.0	17.6	0.31	0.36
C0541	0.0	2.5	2.5	0.38	0.27
C0544	0.0	4.8	4.8	0.47	0.70
C0547	0.0	8.3	8.3	1.82	0.38
C0549	125.0	134.1	9.1	0.82	1.58
C0575	0.0	2.9	2.9	0.81	0.36
C0627	113.3	113.8	0.6	2.10	4.10
C0638	131.5	145.1	13.6	0.71	0.20
C0646	209.6	225.5	15.9	0.60	0.28
C0658	221.2	236.9	15.8	0.48	0.32
C0836	0.0	8.9	8.9	0.16	0.26
C0840	0.0	8.1	8.1	0.66	0.27
C0841	0.0	5.3	5.3	0.68	0.23
C0971	0.0	9.0	9.0	0.65	0.23
C0971	9.3	14.5	5.2	0.64	0.10
C0971	15.0	16.3	1.3	0.65	0.39
C0976	2.1	12.6	10.4	0.60	0.36
C1029	0.0	3.5	3.5	0.83	0.30
C1029 C1110	0.0	5.4	5.4	0.83	0.21
C1111	0.0	1.9	1.9	0.39	0.32
	0.0		5.5		
C1112		5.5		0.48	0.27
C1114	0.0	4.1	4.1	0.66	0.17
C1115	0.0	1.8	1.8	0.56	0.16
C1118	0.0	8.9	8.9	0.37	0.36
C1127	0.0	4.6	4.6	0.24	0.09
C1128	0.0	0.7	0.7	0.13	0.18
C1129	0.0	0.5	0.5	0.04	0.01
C1130	0.0	3.6	3.6	0.70	0.13
C1131	0.0	5.8	5.8	0.69	0.15
C1133	0.0	4.7	4.7	0.86	0.16
C1134	0.0	7.2	7.2	0.30	0.13
C1136	0.0	0.5	0.5	1.23	0.23
C1137	0.0	5.0	5.0	0.60	0.14
C1139	0.0	3.0	3.0	1.09	0.34
C1142	0.0	2.1	2.1	2.01	0.70
C1143	0.0	1.9	1.9	1.31	0.25
C1144	0.0	0.7	0.7	1.97	0.97

Down-hole lengths of intersections are reported.

Hole No	Depth From m	Depth To m	Length m	% Sn	% Cu
C1146	0.0	2.9	2.9	0.92	0.31
C1147	0.0	5.2	5.2	0.35	0.07
C1148	0.0	6.1	6.1	0.29	0.07
C1157	0.0	3.5	3.5	0.93	0.18
C1158	0.0	6.1	6.1	0.24	0.03
C1159	0.0	3.4	3.4	0.18	0.04
C1160	0.0	1.2	1.2	0.50	0.08
C1161	0.0	2.3	2.3	0.83	0.26
C1163	0.0	1.9	1.9	0.03	0.15
C1164	5.4	9.8	4.3	0.21	0.13
C1166	6.9	8.7	1.8	0.21	0.50
C1100	0.0	3.7	3.7	0.24	0.30
C1173	0.0	2.6	2.6	0.49	0.20
C1174	0.0	6.4	6.4	0.49	0.08
C1175 C1179	0.0	1.5	1.5	0.19	0.18
		9.3	9.3		0.18
C1180	0.0			0.22	
C1239	0.0	8.3 25.5	8.3 25.5	1.13	0.17
C1240	0.0	35.5	35.5	0.58	0.20
C1241	0.0	40.8	40.8	0.79	0.14
C1300	0.0	43.9	43.9	0.58	0.15
C1301	108.5	121.8	13.3	0.89	0.06
C1304	0.0	50.7	50.7	0.47	0.12
C1308	108.2	117.8	9.6	0.85	0.16
C1309	0.0	10.4	10.4	0.92	0.18
C1310	0.0	26.2	26.2	0.97	0.24
C1310	49.5	54.7	5.2	0.66	0.10
C1310	61.2	78.8	17.6	0.34	0.09
C1311	0.0	4.1	4.1	0.60	0.09
C1314	0.0	1.1	1.1	0.84	0.16
C1315	0.0	2.0	2.0	0.42	0.10
C1316	102.6	112.5	9.9	0.75	0.53
C1318	0.0	5.7	5.7	0.86	0.17
C1323	0.0	51.0	51.0	0.61	0.18
C1324	0.0	0.6	0.6	1.98	0.39
C1325	0.0	3.6	3.6	0.55	0.12
C1328	0.0	6.1	6.1	0.90	0.19
C1329	0.0	6.1	6.1	0.50	0.06
C1330	0.0	7.0	7.0	0.38	0.36
C1333	88.3	98.6	10.3	0.67	0.24
C1337	0.0	10.6	10.6	0.41	0.21
C1338	0.0	11.2	11.2	0.49	0.34
C1339	0.0	7.4	7.4	0.31	0.07
C1340	0.0	5.0	5.0	0.49	0.17
C1353	107.2	123.9	16.7	0.40	0.38
C1356	79.5	88.8	9.3	0.88	0.56
C1359	69.0	81.6	12.6	0.29	0.41
C1373	0.0	4.4	4.4	0.15	0.09
C1377	14.0	42.6	28.6	0.53	0.14

Hole No	Depth From m	Depth To m	Length m	% Sn	% Cu
C1381	0.0	8.2	8.2	0.77	0.13
C1382	0.0	6.4	6.4	0.55	0.27
C1383	0.0	5.5	5.5	2.88	0.35
C1385	0.0	5.8	5.8	1.00	0.21
C1386	0.0	7.6	7.6	1.06	0.46
C1388	0.0	7.7	7.7	0.59	0.11
C1390	0.0	8.5	8.5	0.51	0.18
C1431	4.3	7.6	3.4	0.19	0.25
C1433	0.0	6.7	6.7	0.96	0.54
C1434	0.0	5.3	5.3	0.41	0.46
C1435	6.3	11.5	5.3	0.19	0.31
C1446	68.3	71.8	3.6	0.50	0.52
C1449	50.3	59.2	8.9	0.73	0.31
C1451	73.2	74.2	1.0	0.34	0.35
C1454	49.8	70.3	20.5	0.50	0.11
C1456	57.0	68.5	11.5	0.90	0.31
C1458	49.3	59.1	9.8	0.44	0.13
C1462	39.3	50.1	10.8	0.29	0.16
C1463	37.6	44.9	7.3	0.11	0.05
C1469	75.1	78.7	3.7	0.40	0.30
C1474	64.7	70.8	6.1	0.41	0.44
C1494	60.4	84.9	24.5	0.62	0.25
C1502	73.1	90.8	17.7	0.27	0.07
C1503	66.1	83.7	17.7	0.58	0.21
C1505	77.7	81.4	3.7	0.29	0.32
C1516	91.9	107.4	15.5	0.35	0.43
C1623	0.0	12.7	12.7	0.12	0.39
C1628	0.0	11.3	11.3	0.19	0.22
C1794	0.0	3.0	3.0	0.99	0.30
C1894	0.0	7.3	7.3	0.97	0.10
C1900	0.0	7.6	7.6	0.40	0.10
C1906	0.0	8.0	8.0	0.39	0.10
Totals and	averages		1150.6	0.62	0.26

Table 13Intersections in Foley zone.

Down-hole lengths of intersections are reported.

Hole No	Depth From m	Depth To m	Down-hole Length m	%WO3
C0969	950.6	1040.6	90.0	0.16
C1485	167.5	398.0	230.5	0.26
C1608	0.0	147.5	147.5	0.23
C1611	0.0	252.0	252.0	0.25
C1615	0.0	421.0	421.0	0.14
C1627	45.0	202.0	157.0	0.14
C1633	185.0	657.8	472.8	0.18
C1634	12.5	383.0	370.5	0.15
C1713	117.5	307.5	190.0	0.27
C1730	50.0	147.5	97.5	0.33
C1741	47.5	200,0	152.5	0.22
C1754	50.0	225.0	175.0	0.26
C1786	167.5	302.5	135.0	0.14
C1800	165.0	257.5	92.5	0.15
C1803	17.5	125.0	107.5	0.15
C1811	57.5	137.5	80.0	0.23
C1824	42.5	115.0	72.5	0.12
C1826	67.5	147.5	80.0	0.23
C1832	82.5	112.5	30.0	0.25
C1833	72.5	120.0	47.5	0.23
C1840	72.5	95.0	22.5	0.19
C1842	87.5	97.5	10.0	0.22
C1852	47.5	122.5	75.0	0.27
C1860	45.0	102.5	57.5	0.23
C1865	32.5	82.5	50.0	0.20
C1869	102.5	125.0	22.5	0.21
Total and averages			3638.8	0.20

Figure 2 Perspective view of diamond drill holes at the Cleveland mine.

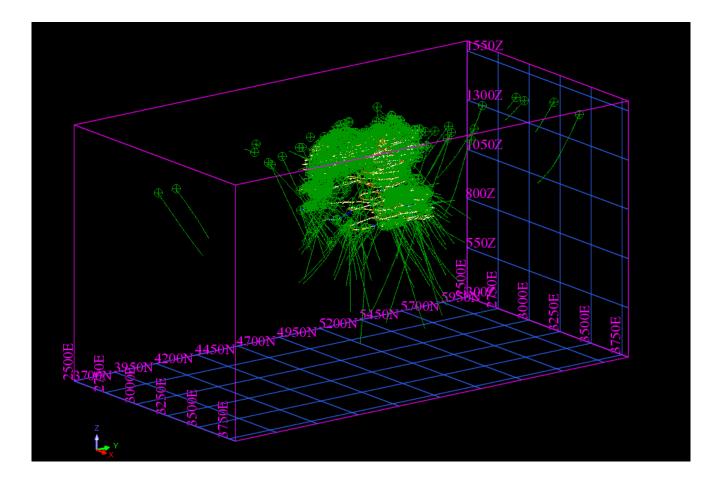


Figure 3 Cross-section 5222N through the tin copper lenses.

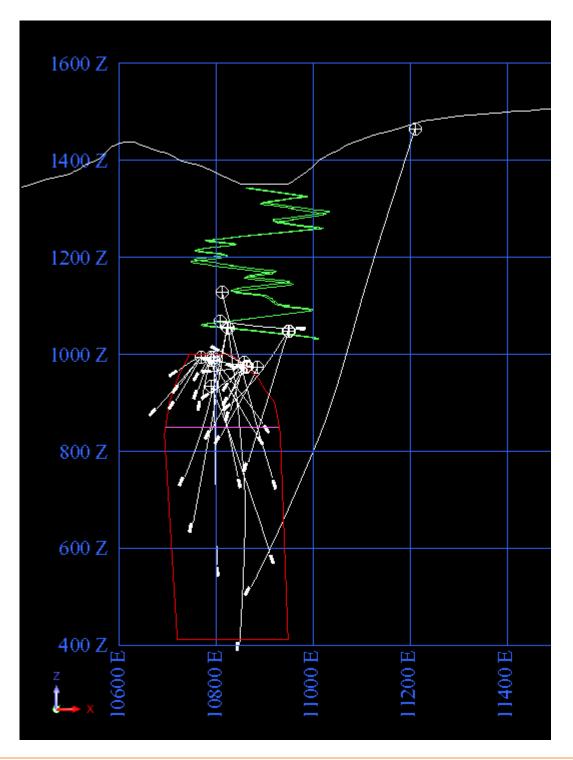


Figure 4 Longitudinal view of Foley zone along 15345m N.

This is a view looking north. The boundary of Foley zone is shown in red, the Cleveland decline in green, diamond drill holes in white, and 850m RL as a pink line.

The interpretation of the Foley zone below 850m RL is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource for this part of the zone and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

