

ASX ANNOUNCEMENT

4 April 2014

About

Board of Directors Mr Michael Walters *Chairman*

Mr Peter Benjamin Managing Director

Mr Jeremy Sinclair Non-Executive Director

ASX: SRR

Capital Structure Shares on issue: 903,315,606 Unlisted options: 96,800,000

Major Shareholders Atlas Iron: 53.45% OM Holdings: 4.01%

Contact

Ground Floor, 1205 Hay Street West Perth WA 6005 PO Box 1259 West Perth WA 6872

Telephone: +61 (08) 9226 4455 Facsimile: +61 (08) 9226 4255

Email: info@shawriver.com.au

For more information about Shaw River or to join the electronic mailing list visit: www.shawriver.com.au

THREE MORE AREAS SUCCESSFULLY TESTED IN SURFACE SAMPLING PROGRAM

- Shaw River Manganese Limited ("Shaw River") (ASX: SRR) has completed further surface sampling at its Otjozondu Manganese Project ("Otjo Project") in Namibia.
- Areas: B, C & D have been tested to identify "at surface manganese lode" for the basis of a start-up inventory for mining and subsequent processing, to underpin the Start Up Production Plan ("SPP") outlined in the ASX release dated March 11th, 2014.
- This now brings the total tonnage of "at surface" manganese bulk sample to approximately 157,000 tonnes.
- Whilst Areas A, B & C were the main focus of sampling, Areas D and D "Additional" are new zones and have considerably added to the mineral inventory. Areas E, S-Bend and Onguressengo have also been sampled with assays still to come.
- Peter Benjamin, Managing Director, advised "this is a very good outcome and the tonnage is much larger than anticipated. There are also a number of areas which have grades in excess of 35% manganese over minable widths. I remain confident this program has the potential to provide the necessary start-up (bulk sample) tonnages for the SPP."
- Shaw River is in discussion with several parties seeking to finance the SPP.

Otjozondu Manganese Project (Figures, 1 to 5)

During 2013 Shaw River continued to build confidence in key parameters of the Otjo Project including those deposits with higher grades and metallurgical response. Typically, the next step would be further investigation of project parameters such as manganese grade, geological continuity and metallurgical yield within a Pre-Feasibility Study (PFS). Shaw River has been reviewing operational plans that aim to improve our understanding of key operational assumptions whilst advancing the Otjo Project in the most cost effective manner. Considering the time and cost taken to complete a PFS, Shaw River has decided to obtain this information by commencing a blast hole surface drilling and trench sampling program at Labusrus, targeting the basis of a start-up, at surface inventory. The Labusrus area forms a subset of a broader, staged plan to subsequently scale the production up to full capacity once key physical parameters are confirmed.

Figure 1: SPP Surface Sampling Localities at Labusrus & S Bend

Consequently, the Company is pursuing a Start-up Production Plan ("SPP") for its Otjo Project. This SPP is targeting a low capital, staged, development option.

Results for Area B, C & D – Surface Trenching and Blast-Hole Drilling Sampling Program (Figures 2 to 5, & Appendices)

The areas chosen preferentially for this drilling and sampling program were those on the granted mining lease (ML 145), had a mineral resource reported in accordance with JORC 2004, (refer to SRR:ASX release December 11th, 2012) contained areas of higher manganese grades, were close to the planned process plant site and had visual "at surface" manganese mineralisation. This area corresponded with the Labusrus area then westwards to S-Bend deposits (Figure 2).

The trenching and blast hole drilling and sampling program commenced in early December 2013 and was completed in mid-March 2014 in Areas A, B, C, D, E, S Bend and Onguressengo which lies east of the plant site. These areas were tested to identify "at surface manganese mineralisation" for the basis of a start-up inventory (bulk sample) for mining and subsequent processing, to underpin the SPP.

A total of 68 trenches were dug with an excavator, usually every 25 metres along strike, trenches were cleaned, mapped geologically and sampled over one metre intervals. A line of blast holes was drilled along each trench, at one metre intervals horizontally, to test the depth to around 5 metres vertically and sampled in one metre intervals. Each sample was geologically logged and assayed using a NITON hand held analyser. A total of 2024 borehole and chip samples were collected of which 319 samples have been sent for check assaying by XRF by an independent laboratory with results still to come.

The results for the surface trenching and blast holes sampling were received and plotted onto surface plans (Figure 2 and 4) and again, two higher grade zones of manganese mineralisation were outlined, separated by a lower grade zone. This geological interpretation is similar to the results from the Pit A sampling reported on March 11th. Higher grades zones considered for a bulk sample are outlined in Areas B, C, D and an area of additional mineralisation to the west of D, referred to as Area D "Additional".

Whilst Areas A, B & C were the main focus of sampling, Areas D and D "Additional" are new zones and have considerably added to the mineral inventory. Areas E, S-Bend and Onguressengo have been sampled with assays still to come.

Encouragingly, the manganese lode has now been exposed along more than 1,200 metres of strike. Detailed geological mapping put the overall thickness of the manganese lode varying between 4.5 and up to 40 metres, estimated horizontal width (EHW) and averaging more than 9 metres (EHW) at surface. It is anticipated that zones of manganese mineralisation, suitable for the delineation of bulk sample(s) will form the basis of "at surface mineralised material or inventory" for the scaled SPP.

Figure 2: Labusrus Area B & C Plan: Position of Sampled Trenches & Assays

At Area B and C, (Figures 2 and 3) the mineralised zones are a hanging wall and a footwall zone, varying from 60 to 150 metres along strike, from 3 to 20 metres, (EHW) and separated by a lower grade manganese zone (<25% Mn).

In consideration of Section "32" (Figure 3) the mineralisation dips variably to the north and north-west. There are zones of manganese mineralisation where the grade exceeds 35%.

Figure 3: Labusrus Area B & C Cross Section "32": Drill & Blast Holes, Trenches & Assays

At Area D and D "Additional", (Figures 4 and 5) the mineralised zones are a hanging wall and a footwall zone (in places less distinct), with a strike length of between 275 and 125 metres, respectively, with a range of between 3 to 10 metres (EHW) and separated by a lower grade manganese zone (<25% Mn).

On Section "8" (Figure 5) the mineralisation dips variably to the north and north-west (Figures 4 & 5). There are zones of manganese mineralisation where the grade exceeds 35%.

Figure 4: Labusrus Area D and D "Additional": Position of Sampled Trenches & Assays

Figure 5: Labusrus Area D and D "Additional" Cross Section "8": Drill & Blast Holes, Trenches & Assays

Overall, zones A, B, C and D of manganese mineralisation, at surface, report a combined tonnage of approximately 157,000 tonnes to a depth of 5 metres. This material is being considered as suitable as a "bulk sample" to test for grade, geological continuity, and metallurgical yield. This result is approximately 80 percent higher than anticipated. This bulk tonnage includes that reported previously from Pit A (SRR: ASX release March 11th, 2014) but does not include as yet, other areas tested, such as Area E, S-Bend and Onguressengo.

Once all of the sample results are collated, this will then determine how much material will be available for the bulk sampling program and which order to mine and process this material.

Managing Director, Peter Benjamin stated "I remain confident that this program should have the potential to outline a sufficient, start-up "at surface mineral inventory" which will initially allow bulk samples of manganese mineralisation to be mined and processed leading to the testing of the key physical parameters, usually estimated in a Pre-Feasibility Study and thence provide confidence to progressively scale up the project to full production."

Corporate

Iron ore producer Atlas Iron Limited holds 53.45% of Shaw River and is a strong supporter of Shaw River's manganese strategy.

For further information please contact:

Peter Benjamin Managing Director +61 (0)8 9226 4455

Join the electronic mailing list and find more information about Shaw River at: <u>www.shawriver.com.au</u>

About Shaw River

Shaw River is a manganese-focused development and exploration company headquartered in Perth, Western Australia. The Company is targeting a low-cost, scalable start-up development of its flagship Otjozondu Manganese Project in Namibia. Otjo has a 17 million tonne mineral resource (refer to SRR: ASX release December 11th, 2012) with significant exploration upside and is located in an area from which manganese has been exported for more than 50 years.

Otjo Project – Location Diagram

Competent Person Statement:

The information in this report to which this statement is attached that relates to Exploration Results, is based on information compiled by Mr. Braam Jankowitz of Gemsbok Consulting Services CC. Mr. Jankowitz is an Independent Consultant, currently contracted to the company, and a Member of the South African Council for Natural Scientists and Professionals, and has sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Jankowitz consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

Forward Looking and Exploration Target Statements:

Some statements in this announcement regarding future events are forward-looking statements. They involve risk and uncertainties that could cause actual results to differ from estimated results. Forward-looking statements include, but are not limited to, statements concerning the Company's exploration program, outlook, target sizes, resource and mineralized material estimates. They include statements preceded by words such as "potential", "target", "scheduled", "planned", "estimate", "possible", "future", "prospective" and similar expressions. The terms "Direct Shipping Ore (DSO)", "Target" and "Exploration Target", where used in this announcement, should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2004), and therefore the terms have not been used in this context. The potential quantity and grade of Exploration Targets are conceptual in nature and it is uncertain if further exploration or feasibility study will result in the determination of a Mineral Resource or Reserve.

APPENDIX 1: JORC Code, 2012 Edition – Table 1 (Trench & Blast Hole Drilling)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	• Nature and quality of sampling (e.g. cut channels,	• All the drill chip material is collected at 1 metre intervals (a nominal 15-20kg),
	random chips, or specific specialized industry	then riffled and split at bore hole locality to approximately 2.0 kg to 3.0 kg per
	standard measurement tools appropriate to the	sample. This sample is pulverized onsite and analysed with NITON (handheld) XRF
	minerals under investigation, such as down hole	instruments.
	gamma sondes, or handheld XRF instruments, etc).	• The NITON (handheld) XRF instruments Models XL2 & XL3 are calibrated monthly
	These examples should not be taken as limiting the	as per instrument supplier instructions and daily measurements of both standards
	broad meaning of sampling.	and blanks are applied every 100 measurements. Each sample is analyzed 3 times
	• Include reference to measures taken to ensure	for 30 seconds each and the average of the 3 readings is reported.
	sample representivity and the appropriate	• Rotary air blast drilling (DTH hammer) was used to obtain 1 m samples from which
	calibration of any measurement tools or systems	2-3 kg was pulverized to produce a 150-200g material for NITON XRF. The
	used.	following used elements were analyzed at OM internal lab i.e. Mn, Fe, Ba, Ag, As,
	• Aspects of the determination of mineralisation that	Bi, Cd, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sb, Se, Sn, Ti, V, W, Zn, Zr
	are Material to the Public Report.	
	• In cases where 'industry standard' work has been	
	done this would be relatively simple (e.g. 'reverse	
	circulation drilling was used to obtain 1 m samples	
	from which 3 kg was pulverised to produce a 30 g	

Criteria	JORC Code explanation	Commentary
	charge for fire assay'). In other cases more	
	explanation may be required, such as where there	
	is coarse gold that has inherent sampling	
	problems. Unusual commodities or mineralisation	
	types (eg submarine nodules) may warrant	
	disclosure of detailed information.	
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole	• Drill type: Rotary air blast with an 89mm hammer was used on a 2.0m by 2.5m
	hammer, rotary air blast, auger, Bangka, sonic, etc)	staggered drill pattern, a total of 318 vertical holes were drilled to 5.5m depth (the
	and details (eg core diameter, triple or standard	0.5m subsample was not sampled.
	tube, depth of diamond tails, face-sampling bit or	
	other type, whether core is oriented and if so, by	
	what method, etc).	
Drill sample recovery	• Method of recording and assessing core and chip	• Method of recording: All material is collected for each 1m interval and the gross
	sample recoveries and results assessed.	weight of each 1m sample has been recorded at the drill site after which it has
	• Measures taken to maximise sample recovery and	been riffled and split down to 2-3kg – this latter weight has also been recorded
	ensure representative nature of the samples.	and captured with the geological logging in the central OM database.
	• Whether a relationship exists between sample	• Flushing of each hole has been applied at 1m intervals to ensure all drilled
	recovery and grade and whether sample bias may	material has been collected before commencing with the next meter.
	have occurred due to preferential loss/gain of	• All material of each 1m sample has been collected, from fine to coarse chip before
	fine/coarse material.	riffling and splitting commenced

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 A representative portion of chip sample for each 1m interval drilled has been geologically logged and captured on paper log sheets and then digitally recorded in a central database for future reference Qualitative and quantitative data of the drill chips have been recorded, all chip trays are stored in the OM store room, no photographs of the chip trays have been taken yet. The total length of each bore hole or trench has been logged on 1m intersections, including FW and HW host rock.
	• The total length and percentage of the relevant	
	intersections logged.	
Sub-sampling	• If core, whether cut or sawn and whether quarter,	All drill chip material has been collected, all dry samples
techniques and sample	half or all core taken.	• Each 1m sample has been riffled and split through a Standard Riffler and 2-3kg of
preparation	• If non-core, whether riffled, tube sampled, rotary	material collected (from 15-20kg)
	split, etc and whether sampled wet or dry.	• All the material of each chip sample was pulverized and riffled and split to 150-
	• For all sample types, the nature, quality and	200g for NITON XRF. The pulverizer has been cleaned with compressed air
	appropriateness of the sample preparation	between samples to minimize any potential contamination.
	technique.	• No duplicate samples were collected either in the field and/or in the laboratory.
	• Quality control procedures adopted for all sub-	• A 150-200g sample of pulverized material has been taken from each 2-3kg chip
	sampling stages to maximise representivity of	sample.
	samples.	

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Each sample has been analyzed 3 times for 30 seconds per analysis using a handheld NITON XRF Model XL2 or XL3, assaying for a suite of major and trace elements (see above) Two NITON (Models XL2 and XL3) handheld XRF instruments have been used in determining the analysis, 3 reading times per sample for 30 seconds per reading has been applied, calibrations have been conducted monthly, standards and blanks have been read daily to ensure calibration are correct, no factors have been applied Standards and blanks have been inserted with every batch of 50 samples, no duplicates have been applied; A total of 200 check samples were analyzed by an external laboratory using XRF assaying techniques, acceptable levels of accuracy (ie lack of bias) and precision have been established. No standards or blanks were sent to the external lab.

Criteria	JORC Code explanation	Commentary
Verification of	• The verification of significant intersections by	• No external verification has been conducted, data validation has been done by
sampling and assaying	either independent or alternative company	alternative company personnel
	personnel.	• No twinned holes were drilled since the drill pattern was drilled on a 2.0m by 2.5m
	• The use of twinned holes.	burden and spacing
	• Documentation of primary data, data entry	• Trenches were sampled across strike at 1 metre intervals.
	procedures, data verification, data storage	• All physical records are kept on site, data capturing is done on site and validated
	(physical and electronic) protocols.	by project geologists and then send to the central database at Perth HO for
	• Discuss any adjustment to assay data.	independent validation by the Database Manager
		No adjustment to assay data
Location of data	• Accuracy and quality of surveys used to locate drill	• Apart from an airborne DTM survey of a larger area, each collar was surveyed by
points	holes (collar and down-hole surveys), trenches,	an independent contract surveyor by Realtime GPS
	mine workings and other locations used in Mineral	UTM WGS84, Zone 34 Southern Hemisphere
	Resource estimation.	• 9 Control Points and 24 pre-marked collars were used as reference for the
	• Specification of the grid system used.	topographic control
	• Quality and adequacy of topographic control.	
Data spacing and	• Data spacing for reporting of Exploration Results.	• The drill pattern was drilled at 2.5m by 2.0m burden and spacing
distribution	• Whether the data spacing and distribution is	• The spacing of 2.5m by 2.0m together with surface geological mapping proved to
	sufficient to establish the degree of geological and	be sufficient for geological and grade continuity
	grade continuity appropriate for the Mineral	No sample composition was applied at this stage
	Resource and Ore Reserve estimation procedure(s)	• Trenches are spaced at 25 metre intervals along strike.

Criteria	JORC Code explanation	Commentary
	and classifications applied.	
	• Whether sample compositing has been applied.	
Orientation of data in	• Whether the orientation of sampling achieves	• No unbiased sampling was applied since a fixed pattern of 2.5m by 2.0m was
relation to geological	unbiased sampling of possible structures and the	drilled across and along strike of the ore body
structure	extent to which this is known, considering the	• All blast holes were drilled vertically to 5.5m depth although the mineralized
	deposit type.	horizon dips mostly at 45° to 65°
	• If the relationship between the drilling orientation	• The trenches were set across the strike of the mineralised lodes.
	and the orientation of key mineralised structures is	
	considered to have introduced a sampling bias, this	
	should be assessed and reported if material.	
Sample security	• The measures taken to ensure sample security.	Sample submission sheets sent to external lab for check assaying and pre-
		pulverised samples are tied up in plastic backs and shipped in boxes. 2kg sub
		sample at drill rigs are contained in calico bags for transport to on site lab.
Audits or reviews	• The results of any audits or reviews of sampling	No external audits have been conducted but internal reviews and adjustments of
	techniques and data.	sampling techniques have been done since the drill rig was not fitted with a
		cyclone and sample collection facility.

APPENDIX 2: Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and	• Type, reference name/number, location and	• Mining License 145, issued to Otjozondu Mining (Pty) Ltd by the Ministry of Mines
land tenure status	ownership including agreements or material issues	and Energy, Namibia
	with third parties such as joint ventures,	
	partnerships, overriding royalties, native title	
	interests, historical sites, wilderness or national	
	park and environmental settings.	
	• The security of the tenure held at the time of	
	reporting along with any known impediments to	
	obtaining a licence to operate in the area.	
Exploration done by	• Acknowledgment and appraisal of exploration by	• Prior exploration results conducted by other parties, although held by the
other parties	other parties.	company, have not been used as part of this review
Geology	• Deposit type, geological setting and style of	• The Otjozondu Manganese Field is located at the eastern exposed extent of the
	mineralisation.	inland branch of the late Proterozoic Damara Orogen, and situated just north
		of the Okahandja Lineament within the Southern Central Zone of the
		Damara Orogen, on Central and North Eastern Namibia.
		• The manganese mineralization found is associated with post-glacial BIF sequences
		on low to high grade folded and metamorphic continental margin sediments. The

Criteria JORC Code explanation

Commentary

manganese mineralised layer is lying between a feldspathic meta-quartzite (original coarse arkosic sandstone to conglomerate) and a thinly laminated facies, composed of millimetre to centimetre thick quartz-feldspathic beds, finely crystallised iron oxide (Itabirite) beds and ferro-magnesian mineral (biotite, amphibole, clinopyroxene) beds considered as BIFs. (Itabirite, also known as banded-quartz <u>hematite</u> and hematite <u>schist</u>, is a laminated, metamorphosed oxide-facies iron formation in which the original <u>chert</u> or <u>jasper</u>. bands have been recrystallized into megascopically distinguishable grains of <u>quartz</u> and the iron is present as thin layers of hematite, <u>magnetite</u>, or <u>martite</u> – <u>pseudomorphs</u> of hematite after magnetite).

The manganese mineralisation is found to outcrop over large areas and is exposed over a distance of at least 144km. The Neo-Proterozoic Otjosondu Mn-ore district at Otjosondu in linked to biochemical Mn-oxides deposition at a peculiar redox window, during post-glacial snowball Earth meltdown, at the margin of a hyperstratified ocean. These conditions favoured high-grade Mn concentration controlled at first order by depositional processes and paleogeography. The original manganese series was subjected to successive phases of intense tectono-metamorphism, with partial melting, folding and stretching that contorted and dislocated the ore layer without primary grade changes.

Shaw River Manganese Limited

Criteria	JORC Code explanation	Commentary
		• A superficial "nodule" ore layer (detrital ore) is found to be associated with most outcrop and is linked to local weathering and mechanical reworking of the primary mineralization.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 The assay results are presented in Figure 3 and represent the composite average manganese grade over the 5 metre sampled interval. The pattern of results provide an understanding of the outline of the area for consideration of a bulk sample. Thus no requirement for a list of individual 1 metre assays was considered necessary.

Criteria	JORC Code explanation	Commentary
Data aggregation	• In reporting Exploration Results, weighting	• The grade of the 5 metre intervals was estimated using the arithmetic averages
methods	averaging techniques, maximum and/or minimum	• Trench samples were individual (See table) and aggregated to represent areas
	grade truncations (eg cutting of high grades) and	with a manganese grade >25% Mn with a minimum internal interval of 2 metres of
	cut-off grades are usually Material and should be	waste, approximately.
	stated.	
	• Where aggregate intercepts incorporate short	
	lengths of high grade results and longer lengths of	
	low grade results, the procedure used for such	
	aggregation should be stated and some typical	
	examples of such aggregations should be shown in	
	detail.	
	• The assumptions used for any reporting of metal	
	equivalent values should be clearly stated.	
Relationship between	• These relationships are particularly important in	• All blast holes were drilled at a dip of -90° whilst the Manganese layer dips at 45°
mineralisation widths	the reporting of Exploration Results.	to 65°, varying dip over short distances along strike.
and intercept lengths	• If the geometry of the mineralisation with respect	• Drill hole composites are based on "down hole lengths" and not adjusted for true
	to the drill hole angle is known, its nature should be	or estimated width.
	reported.	• Trench samples were taken on surface, generally at right angles to strike and
	• If it is not known and only the down hole lengths	along the estimated horizontal width.
	are reported, there should be a clear statement to	

Criteria	JORC Code explanation	Commentary
	this effect (eg 'down hole length, true width not	
	known').	
Diagrams	• Appropriate maps and sections (with scales) and	Maps attached
	tabulations of intercepts should be included for any	
	significant discovery being reported These should	
	include, but not be limited to a plan view of drill	
	hole collar locations and appropriate sectional	
	views.	
Balanced reporting	• Where comprehensive reporting of all Exploration	• The blast hole assay results are presented in Figure 3 and represent the composite
	Results is not practicable, representative reporting	average manganese grade over the 5 metre sampled interval. The pattern of
	of both low and high grades and/or widths should	results provide an understanding of the outline of the area for consideration of a
	be practiced to avoid misleading reporting of	bulk sample. Thus no requirement for a list of individual 1 metre assays was
	Exploration Results.	considered necessary.
		Refer attached table for trench results
Other substantive	• Other exploration data, if meaningful and material,	Previous exploration drilling have been reported with previous resource
exploration data	should be reported including (but not limited to):	statements
	geological observations; geophysical survey results;	
	geochemical survey results; bulk samples – size and	
	method of treatment; metallurgical test results;	
	bulk density, groundwater, geotechnical and rock	

Criteria	JORC Code explanation Commentary
	characteristics; potential deleterious or
	contaminating substances.
Further work	• The nature and scale of planned further work (eg • Extensions both west and east of Pit A are being tested with trenching at 25m
	tests for lateral extensions or depth extensions or intervals with further grade control drilling after trench mapping and sampling
	large-scale step-out drilling). have been completed.
	Diagrams clearly highlighting the areas of possible
	extensions, including the main geological
	interpretations and future drilling areas, provided
	this information is not commercially sensitive.

APPENDIX 3: Assay Results Trench Blast Hole and Drill Sampling

BH ID	Sample ID	Northing	Easting	RL	Dip	Azimuth	Mn (%)
LTR008B	LTR008B1	7,650,758.51	191,897.91	1,497.92	-90	0	30.0
	LTR008B2	7,650,758.51	191,897.91	1,496.92	-90	0	11.0
LTR008C	LTR008C1	7,650,759.41	191,897.82	1,497.95	-90	0	21.0
	LTR008C2	7,650,759.41	191,897.82	1,496.95	-90	0	20.0
	LTR008C3	7,650,759.41	191,897.82	1,495.95	-90	0	4.0
LTR008D	LTR008D1	7,650,760.45	191,897.95	1,498.42	-90	0	14.3
	LTR008D2	7,650,760.45	191,897.95	1,497.42	-90	0	39.6
	LTR008D3	7,650,760.45	191,897.95	1,496.42	-90	0	49.9
	LTR008D4	7,650,760.45	191,897.95	1,495.42	-90	0	41.6
	LTR008D5	7,650,760.45	191,897.95	1,494.42	-90	0	21.8
LTR008E	LTR008E1	7,650,761.62	191,898.22	1,497.98	-90	0	20.5
	LTR008E2	7,650,761.62	191,898.22	1,496.98	-90	0	34.9
	LTR008E3	7,650,761.62	191,898.22	1,495.98	-90	0	48.6
	LTR008E4	7,650,761.62	191,898.22	1,494.98	-90	0	48.4
	LTR008E5	7,650,761.62	191,898.22	1,493.98	-90	0	32.4
LTR008F	LTR008F1	7,650,762.51	191,898.12	1,497.68	-90	0	11.9
	LTR008F2	7,650,762.51	191,898.12	1,496.68	-90	0	23.9
	LTR008F3	7.650.762.51	191.898.12	1.495.68	-90	0	49.3
	LTR008F4	7.650.762.51	191.898.12	1.494.68	-90	0	50.7
	LTR008F5	7.650.762.51	191.898.12	1.493.68	-90	0	39.9
LTR008G	LTR008G1	7,650,763,32	191,897,90	1,497,71	-90	0	10.2
21110000	LTR008G2	7 650 763 32	191 897 90	1 496 71	-90	0	12.3
	LTR008G3	7 650 763 32	191 897 90	1 495 71	-90	0	18.9
	LTR008G4	7 650 763 32	191 897 90	1 494 71	-90	0	37.5
	LTR008G5	7 650 763 32	191 897 90	1 493 71	-90	0	52.1
LTR008H	LTR008H1	7 650 764 53	191 898 22	1 498 04	-90	0	7.2
211100011	LTR008H2	7 650 764 53	191 898 22	1 497 04	-90	0	13.4
	LTR008H3	7 650 764 53	191 898 22	1 496 04	-90	0	19.6
	LTR008H4	7 650 764 53	191 898 22	1 495 04	-90	0	21.3
		7 650 764 53	191,898,22	1 494 04	-90	0	40.1
1 TR0081	LTR00811	7 650 765 49	191,897,83	1 497 74	-90	0	22.8
Entered	17800812	7,650,765,49	191,897.83	1 496 74	-90	0	21.0
	17800813	7,650,765,49	191,897.83	1 495 74	-90	0	18.9
	LTR00814	7 650 765 49	191 897 83	1 494 74	-90	0	7.1
		7,650,765,49	191,897.83	1 493 74	-90	0	7.1
1TR0081	LTR00811	7 650 766 32	191,898.08	1 497 45	-90	0	25.1
Enteros	17800812	7,650,766,32	191,898.08	1 496 45	-90	0	18.5
	1TR00813	7,650,766,32	191,898.08	1,490.45	-90	0	18.2
	1TR00814	7,650,766,32	191,898.08	1 494 45	-90	0	17.9
	LTR00815	7,650,766,32	191,898.08	1 493 45	-90	0	16.8
I TROOSK	LTR008K1	7,650,767,59	191,897.85	1 492 45	-90	0	3.8
Entoboli	LTR008K2	7,650,767,59	191,897.85	1 491 45	-90	0	11.3
	LTR008K3	7,650,767,59	191,897.85	1 490 45	-90	0	21.5
	LTR008K4	7,650,767,59	191,897.85	1 489 45	-90	0	21.5
		7 650 767 59	191 897 85	1 488 45	-90	0	18 /
ITR032B	ITR032B1	7 650 872 77	192 469 06	1 497 18	-90	0	22.4
LINUJZD	1TR032B1	7 650 872 77	192,409.00	1 496 19	-30	0	33.4 72.1
1TR032C	LTR03202	7 650 872 6/	192,403.00	1 497 21	-30	0	23.1
LINUJZC	1TR032C2	7 650 872 6/	192,408.40	1 496 21	-30	0	25.2
	LTR03202	7 650 872 / 15	192,408.40	1 496 90	-30	0	22 0
21110320		7 650 873 //5	192,400.40	1 495 99	-90	0	26.0
LTR032F	LTR03252	7 650 874 04	192,400.40	1 497 05	-30	0	20.0
LINUJAL	ITR032E1	7,000,074.04	192,407.09	1 496 05	-30	0	27 5
	LTR032E3	7,000,074.04	192,407.09	1 495 05	-30	0	11 0
		7,000,074.04	192,407.09	1 /06 96	-90	0	16.0
LINUJZE	17803252	7 650 975 27	192,400.25	1 /05 96	-90	0	10.8
	1TR032F2	7 650 975 27	192,400.25	1 /0/ 96	-90	0	12.5 5 0
ITPO22C		7,000,070.37	102 467 21	1 /06 15	-90	0	3.0
110320		7,000,070.14	102 467 24	1,490.15	-90	0	12.8
		7,050,870.14	102,467.31	1,490.15	-90	U	5.1
	LINUSZUS	1,000,870.14	192,407.31	1,433.13	-90	U	3.4

	Sample ID	Northing	Fasting	PI	Din	Azimuth	Mn (%)
		7 650 976 14	102 467 21	RL 1 404 15	Dip	Azimutn	1 E
1700221	LTR032G4	7,650,876.14	192,467.31	1,494.15	-90	0	1.5
LIRU32I	LTR032I1	7,650,877.76	192,466.77	1,495.87	-90	0	11.6
1700001	LTR032I2	7,650,877.76	192,466.77	1,494.87	-90	0	4.2
LIRU32J	LTR032J1	7,650,878.87	192,466.33	1,493.87	-90	0	6.3
TROOPY	LTR032J2	7,650,878.87	192,466.33	1,492.87	-90	0	2.8
LIRU32K	LTR032K1	7,650,879.90	192,465.90	1,495.60	-90	0	18.7
	LTR032K2	7,650,879.90	192,465.90	1,494.60	-90	0	10.6
	LTR032K3	7,650,879.90	192,465.90	1,493.60	-90	0	5.8
	LTR032K4	7,650,879.90	192,465.90	1,492.60	-90	0	3.7
	LTR032K5	7,650,879.90	192,465.90	1,491.60	-90	0	3.1
LTR032L	LTR032L1	7,650,880.85	192,465.34	1,495.67	-90	0	33.1
	LTR032L2	7,650,880.85	192,465.34	1,494.67	-90	0	16.9
	LTR032L3	7,650,880.85	192,465.34	1,493.67	-90	0	10.7
	LTR032L4	7,650,880.85	192,465.34	1,492.67	-90	0	17.7
	LTR032L5	7,650,880.85	192,465.34	1,491.67	-90	0	4.7
LTR032M	LTR032M1	7,650,881.76	192,464.92	1,495.51	-90	0	37.5
	LTR032M2	7,650,881.76	192,464.92	1,494.51	-90	0	35.8
	LTR032M3	7,650,881.76	192,464.92	1,493.51	-90	0	33.9
	LTR032M4	7,650,881.76	192,464.92	1,492.51	-90	0	32.1
	LTR032M5	7,650,881.76	192,464.92	1,491.51	-90	0	8.2
LTR032N	LTR032N1	7,650,882.34	192,464.63	1,495.48	-90	0	33.6
	LTR032N2	7,650,882.34	192,464.63	1,494.48	-90	0	34.3
	LTR032N3	7,650,882.34	192,464.63	1,493.48	-90	0	36.5
	LTR032N4	7,650,882.34	192,464.63	1,492.48	-90	0	34.3
	LTR032N5	7,650,882.34	192,464.63	1,491.48	-90	0	34.2
LTR032O	LTR03201	7,650,883.06	192,464.31	1,495.69	-90	0	31.4
	LTR03202	7,650,883.06	192,464.31	1,494.69	-90	0	36.0
	LTR03203	7,650,883.06	192,464.31	1,493.69	-90	0	35.2
	LTR03204	7,650,883.06	192,464.31	1,492.69	-90	0	33.7
	LTR03205	7,650,883.06	192,464.31	1,491.69	-90	0	36.2
LTR032P	LTR032P1	7,650,884.11	192,463.78	1,495.88	-90	0	34.5
	LTR032P2	7,650,884.11	192,463.78	1,494.88	-90	0	34.4
	LTR032P3	7,650,884.11	192,463.78	1,493.88	-90	0	36.2
	LTR032P4	7,650,884.11	192,463.78	1,492.88	-90	0	32.9
	LTR032P5	7,650,884.11	192,463.78	1,491.88	-90	0	25.4
LTR032Q	LTR032Q1	7,650,885.09	192,463.31	1,495.87	-90	0	36.2
	LTR032Q2	7,650,885.09	192,463.31	1,494.87	-90	0	38.1
	LTR032Q3	7,650,885.09	192,463.31	1,493.87	-90	0	36.0
	LTR032Q4	7,650,885.09	192,463.31	1,492.87	-90	0	34.7
	LTR032Q5	7,650,885.09	192,463.31	1,491.87	-90	0	26.2
LTR032R	LTR032R1	7,650,885.92	192,462.74	1,495.83	-90	0	39.2
	LTR032R2	7,650,885.92	192,462.74	1,494.83	-90	0	35.0
	LTR032R3	7,650,885.92	192,462.74	1,493.83	-90	0	37.4
	LTR032R4	7,650,885.92	192,462.74	1,492.83	-90	0	30.7
	LTR032R5	7,650,885.92	192,462.74	1,491.83	-90	0	4.7
LTR032S	LTR032S1	7,650,886.92	192,462.25	1,495.77	-90	0	39.5
	LTR032S2	7,650,886.92	192,462.25	1,494.77	-90	0	38.8
	LTR032S3	7,650,886.92	192,462.25	1,493.77	-90	0	35.2
	LTR032S4	7,650,886.92	192,462.25	1,492.77	-90	0	33.2
	LTR032S5	7,650,886.92	192,462.25	1,491.77	-90	0	8.5
LTR032T	LTR032T1	7,650,887.70	192,461.77	1,495.69	-90	0	14.3
	LTR032T2	7,650,887.70	192,461.77	1,494.69	-90	0	30.0
	LTR032T3	7,650,887.70	192,461.77	1,493.69	-90	0	34.1
	LTR032T4	7,650,887.70	192,461.77	1,492.69	-90	0	34.4
	LTR032T5	7,650,887.70	192,461.77	1,491.69	-90	0	29.7
LTR032U	LTR032U1	7,650.888.61	192,461.45	1,495.80	-90	0	8.7
	LTR032U2	7,650.888.61	192.461.45	1,494.80	-90	0	28.0
	LTR032U3	7,650.888.61	192.461.45	1,493.80	-90	0	35.4
	LTR032U4	7,650.888.61	192.461.45	1,492.80	-90	0	33.8
	LTR032U5	7,650.888.61	192.461.45	1.491.80	-90	0	33.3
LTR032V	LTR032V1	7,650 889 30	192,460 78	1,495 56	-90	0	11 1
1	LTR032V2	7 650 889 30	192 460 78	1,494 56	-90	0	27.1
	1TR032V3	7 650 889 30	192,460.78	1 493 56	-90	0	34.9
	1TR032V/	7 650 880 20	192,400.78	1 492 56		0	37.0
	LTR032V5	7 650 889 30	192,460,78	1 491 56	-90	0	39.2

Blast Drill Hole Samples

BH ID	Sample ID	Northing	Easting	RL	Dip	Azimuth	Mn (%)
LTR032W	LTR032W1	7,650,889.84	192,460.44	1,495.48	-90	0	14.2
	LTR032W2	7,650,889.84	192,460.44	1,494.48	-90	0	12.4
	LTR032W3	7,650,889.84	192,460.44	1,493.48	-90	0	21.0
	LTR032W4	7,650,889.84	192,460.44	1,492.48	-90	0	30.2
	LTR032W5	7,650,889.84	192,460.44	1,491.48	-90	0	36.8

Diamond Drill Hole Samples

BH ID	Sample ID	Northing	Easting	RL	Dip	Azimuth	Mn (%)
LABDH0003	Y0025	7,650,770.53	191,900.68	1,494.03	-60	159	0.0
	Y0026	7,650,770.25	191,900.79	1,493.50	-60	159	0.1
	Y0027	7,650,770.01	191,900.88	1,493.07	-60	159	0.2
	Y0028	7,650,769.78	191,900.97	1,492.64	-60	159	23.6
	Y0029	7,650,769.54	191,901.07	1,492.19	-60	159	28.6
	Y0030	7,650,769.24	191,901.18	1,491.64	-60	159	29.3
	Y0031	7,650,769.00	191,901.27	1,491.18	-60	159	25.9
	Y0032	7,650,768.73	191,901.38	1,490.69	-60	159	29.8
	Y0033	7,650,768.46	191,901.48	1,490.19	-60	159	22.7
	Y0034	7,650,768.15	191,901.60	1,489.61	-60	159	19.7
	Y0035	7,650,767.94	191,901.68	1,489.23	-60	159	20.6
	Y0036	7,650,767.77	191,901.75	1,488.90	-60	159	2.8
	Y0037	7,650,767.43	191,901.88	1,488.27	-60	159	12.7
	Y0038	7,650,767.24	191,901.95	1,487.93	-60	159	25.8
LABDH0003A	Y0039	7,650,769.58	191,901.15	1,491.96	-60	159	6.5
	Y0041	7,650,769.36	191,901.24	1,491.55	-60	159	26.9
	Y0042	7,650,769.11	191,901.33	1,491.10	-60	159	30.7
	Y0043	7,650,768.74	191,901.48	1,490.41	-60	159	29.1
	Y0044	7,650,768.48	191,901.58	1,489.92	-60	159	28.3
	Y0045	7,650,768.29	191,901.65	1,489.57	-60	159	26.4
	Y0046	7,650,768.05	191,901.74	1,489.12	-60	159	22.1
	Y0047	7,650,767.74	191,901.86	1,488.55	-60	159	20.4
	Y0048	7,650,767.28	191,902.03	1,487.70	-60	159	5.8
	Y0049	7,650,767.02	191,902.14	1,487.22	-60	159	20.6
	Y0050	7,650,766.78	191,902.23	1,486.77	-60	159	41.6
	Y0051	7,650,766.18	191,902.46	1,485.65	-60	159	46.6

Reverse Circulation Hole Samples

BH ID	Sample ID	Northing	Easting	RL	Dip	Azimuth	Mn (%)
LABRC2005	Y0183	7,650,922.81	192,456.07	1,496.34	-60	159	0.3
	Y0184	7,650,922.34	192,456.25	1,495.48	-60	159	0.4
	Y0185	7,650,921.87	192,456.43	1,494.61	-60	159	0.4
	Y0186	7,650,921.41	192,456.60	1,493.75	-60	159	0.4
	Y0187	7,650,920.94	192,456.78	1,492.88	-60	159	1.5
	Y0188	7,650,920.47	192,456.96	1,492.01	-60	159	0.7
	Y0189	7,650,920.01	192,457.14	1,491.15	-60	159	8.7
	Y0191	7,650,919.54	192,457.32	1,490.28	-60	159	7.1
	Y0192	7,650,919.07	192,457.50	1,489.42	-60	159	2.4
	Y0193	7,650,918.61	192,457.68	1,488.55	-60	159	1.5
	Y0194	7,650,918.14	192,457.86	1,487.68	-60	159	0.8
	Y0195	7,650,917.67	192,458.04	1,486.82	-60	159	1.4
	Y0196	7,650,917.21	192,458.22	1,485.95	-60	159	0.6
	Y0197	7,650,906.94	192,462.16	1,466.90	-60	159	0.5
	Y0198	7,650,906.47	192,462.34	1,466.03	-60	159	8.1
	Y0199	7,650,906.00	192,462.52	1,465.17	-60	159	21.7
	Y0201	7,650,905.54	192,462.70	1,464.30	-60	159	21.1
	Y0202	7,650,905.07	192,462.88	1,463.44	-60	159	15.8
	Y0203	7,650,904.60	192,463.06	1,462.57	-60	159	3.4
	Y0204	7,650,904.14	192,463.23	1,461.70	-60	159	0.4
LAB_RC_089	Z0261	7,650,895.36	192,469.35	1,496.62	-60	159	5.5
	Z0262	7,650,894.90	192,469.53	1,495.75	-60	159	1.1
	Z0263	7,650,894.43	192,469.70	1,494.88	-60	159	9.1
	Z0264	7,650,893.96	192,469.88	1,494.02	-60	159	2.1
	X0179	7,650,892.56	192,470.42	1,491.42	-60	159	1.6
	X0181	7,650,892.09	192,470.60	1,490.55	-60	159	27.8
	X0182	7,650,891.63	192,470.78	1,489.69	-60	159	30.5
	X0183	7,650,891.16	192,470.96	1,488.82	-60	159	31.1

Reverse Circulation Hole Samples BH ID Sample ID Northing Easting RL Dip Azimuth Mn (%) X0184 7,650,890.69 192,471.14 1,487.96 -60 159 30.0 X0185 -60 7,650,890.23 192,471.32 1,487.09 159 6.2 Z0265 7,650,889.76 192,471.50 1,486.22 -60 159 0.5 Z0266 7,650,888.36 192,472.03 1,483.63 -60 159 0.1 Z0267 7,650,887.43 192,472.39 1,481.89 -60 159 0.1

CANNOUNCEMENT

AS

Trench Sample	es					
Trench ID	Trench Sample ID	Northing	Easting	RL	Mn (%)	Fe (%)
LTR001	LTR001A	7,650,735.43	191,721.93	1,528.72	1.4	1.4
	LTR001B	7,650,736.31	191,721.81	1,528.28	40.1	10.1
	LTR001C	7,650,737.22	191,721.72	1,527.87	49.5	5.4
	LTR001D	7,650,738.10	191,721.56	1,527.41	50.3	4.6
	LTR001E	7,650,738.98	191,721.41	1,526.96	19.1	14.1
	LTR001F	7,650,739.88	191,721.31	1,526.54	8.4	20.3
LTR002	LTR002A	7,650,738.39	191,748.85	1,525.75	2.0	17.9
	LTR002B	7,650,739.25	191,748.65	1,525.28	32.4	8.8
	LTR002C	7,650,740.13	191,748.49	1,524.83	30.2	8.5
	LTR002D	7,650,741.02	191,748.26	1,524.42	23.2	13.1
	LTR002E	7,650,741.88	191,747.93	1,524.01	24.1	14.3
	LTR002F	7,650,742.84	191,748.07	1,523.61	17.2	18.7
	LTR002G	7,650,743.60	191,747.42	1,523.14	18.1	17.8
LTR003	LTR003A	7,650,742.99	191,775.04	1,521.62	1.1	1.1
	LTR003B	7,650,743.68	191,774.88	1,522.32	29.4	13.7
	LTR003C	7,650,744.38	191,774.69	1,523.01	32.5	12.5
	LTR003D	7,650,745.07	191,774.54	1,523.72	20.5	20.4
	LTR003F	7,650,745.78	191,774.43	1,524.42	19.1	18.1
	LTR003G	7,650,746.47	191,774.16	1,525.10	32.8	15.9
	LTR003H	7,650,747.12	191,774.06	1,525.86	29.1	15.3
	LTR003I	7,650,747.84	191,773.90	1,526.54	43.5	13.3
	LTR003J	7,650,748.51	191,773.76	1,527.27	17.6	18.3
LTR004	LTR004A	7,650,749.16	191,794.71	1,527.09	1.5	5.4
	LTR004B	7,650,750.08	191,794.33	1,527.18	35.1	15.0
	LTR004C	7,650,751.04	191,794.05	1,527.28	37.8	7.2
	LTR004D	7,650,751.96	191,793.67	1,527.37	44.4	6.3
	LTR004E	7,650,752.91	191,793.38	1,527.46	26.5	18.9
	LTR004F	7,650,753.79	191,792.88	1,527.55	21.7	15.1
	LTR004G	7,650,754.80	191,792.73	1,527.65	20.0	16.2
	LTR004H	7,650,755.75	191,792.46	1,527.75	26.3	15.1
	LTR004I	7,650,756.61	191,791.89	1,527.83	31.8	11.9
LTR005	LTR005A	7,650,751.41	191,820.13	1,532.80	8.8	11.2
	LTR005B	7,650,752.40	191,820.10	1,532.63	22.8	9.2
	LTR005C	7,650,753.39	191,820.14	1,532.48	27.0	18.3
	LTR005D	7,650,754.37	191,819.98	1,532.32	25.2	10.0
	LTR005E	7,650,755.36	191,819.94	1,532.15	1.8	22.8
	LTR005F	7,650,756.34	191,820.25	1,531.98	2.1	24.4
LTR006	LTR006A	7,650,752.31	191,852.12	1,528.67	1.2	4.0
	LTR006B	7,650,753.02	191,851.48	1,528.96	27.8	15.3
	LTR006C	7,650,753.71	191,850.85	1,529.29	23.7	16.8
	LTR006D	7,650,754.46	191,850.23	1,529.55	29.6	16.1
	LTR006E	7,650,755.33	191,849.83	1,529.95	28.3	13.8
	LTR006F	7,650,755.99	191,849.09	1,530.16	28.0	10.2

Trench ID	Trench Sample	Northing	Easting	RL	Mn (%)	Fe (%)
	LTR006G	7,650,756.56	191,848.34	1,530.56	4.6	29.9
	LTR006H	7,650,757.44	191,847.86	1,530.77	1.3	25.5
LTR007	LTR007A	7,650,753.76	191,871.55	1,535.79	0.9	1.4
	LTR007B	7,650,754.69	191,871.33	1,535.47	30.5	15.4
	LTR007C	7,650,755.55	191,871.22	1,534.96	28.5	12.1
	LTR007D	7,650,756.50	191,871.29	1,534.61	22.6	15.6
	LTR007E	7,650,757.36	191,870.98	1,534.14	24.8	10.1
	LTR007F	7,650,758.29	191,871.34	1,533.68	37.6	12.6
	LTR007G	7,650,759.23	191,870.92	1,533.42	5.3	12.7
	LTR007H	7,650,760.10	191,870.92	1,532.90	1.1	10.7
LTR008	LTR008A	7,650,758.87	191,897.72	1,533.79	1.3	1.4
	LTR008B	7,650,759.85	191,897.61	1,533.97	41.5	6.6
	LTR008C	7,650,760.84	191,897.59	1,534.14	32.1	8.1
	LTR008D	7,650,761.83	191,897.62	1,534.31	24.7	17.1
	LTR008E	7,650,762.80	191,897.59	1,534.52	22.8	19.9
	LTR008F	7,650,763.78	191,897.62	1,534.72	17.5	21.2
	LTR008G	7,650,764.77	191,897.59	1,534.91	20.5	19.4
	LTR008H	7,650,765.75	191,897.57	1,535.09	23.4	22.4
	LTR008I	7,650,766.73	191,897.55	1,535.28	29.0	18.8
	LTR008J	7,650,767.71	191,897.53	1,535.46	29.0	11.7
	LTR008K	7,650,768.70	191,897.50	1,535.65	27.4	12.8
LTR009	LTR009A	7,650,768.03	191,926.25	1,526.90	47.9	8.4
	LTR009B	7,650,768.71	191,925.94	1,527.56	45.8	7.4
	LTR009C	7,650,769.40	191,925.64	1,528.22	29.1	16.8
	LTR009D	7,650,770.09	191,925.33	1,528.88	27.7	20.4
	LTR009E	7,650,770.77	191,925.03	1,529.54	25.0	20.1
	LTR009F	7,650,771.46	191,924.73	1,530.20	30.5	22.7
	LTR009G	7,650,772.15	191,924.42	1,530.86	12.5	15.9
LTR010	LTR010A	7,650,767.57	191,951.61	1,529.22	1.2	11.1
	LTR010B	7,650,768.50	191,951.56	1,528.86	35.8	19.0
	LTR010C	7,650,769.42	191,951.50	1,528.49	21.6	17.3
	LTR010D	7,650,770.35	191,951.44	1,528.13	28.4	11.2
	LTR010E	7,650,771.28	191,951.38	1,527.76	28.5	8.5
	LTR010F	7,650,772.21	191,951.32	1,527.40	1.5	14.1
	LTR010G	7,650,773.14	191,951.26	1,527.03	1.4	2.4
LTR011	LTR011A	7,650,766.92	191,981.57	1,522.52	3.9	37.7
	LTR011B	7,650,767.63	191,980.90	1,522.73	34.9	5.9
	LTR011C	7,650,768.34	191,980.22	1,522.94	3.0	26.6
	LTR011D	7,650,769.05	191,979.55	1,523.15	24.3	15.7
	LTR011E	7,650,769.76	191,978.88	1,523.36	28.0	16.7
	LTR011F	7,650,770.46	191,978.20	1,523.57	28.6	9.4
	LTR011G	7,650,771.17	191,977.53	1,523.79	23.3	8.7
	LTR011H	7,650,771.88	191,976.86	1,524.00	24.6	18.1
	LTR011I	7,650,772.59	191,976.18	1,524.21	27.6	12.2
	LTR011J	7,650,773.30	191,975.51	1,524.42	30.5	16.6
	LTR011K	7,650,774.01	191,974.84	1,524.63	30.0	19.7
	LTR011L	7,650,774.72	191,974.16	1,524.84	28.9	19.0
	LTR011M	7,650,775.43	191,973.49	1,525.05	1.0	20.7
LTR012	LTR012A	7 650 771 81	192 003 00	1 524 94	11	18.9

Trench Sample	Trench Sample	Northing	Fasting	RI	Mn (%)	Fe (%)
Trencinito		7 650 772 79	192.002.82	1 525 11	2.0	11.7
	LTR012D	7,650,772.79	192,002.85	1,525.11	23.0	11.7
	LTR012D	7,650,774,73	192,002.00	1 525 44	18.3	19.5
	LTR012E	7,650,775,70	192,002.45	1,525.44	26.9	15.5
	LTR012E	7,650,776,67	192,002.55	1,525.00	30.7	13.5
	LTR012G	7,650,777,64	192,001.99	1,525.93	26.4	16.6
	LTR012H	7.650.778.62	192.001.82	1,526.10	2.2	17.8
	LTR012I	7.650.779.59	192.001.65	1.526.26	1.0	3.0
LTR013	LTR013A	7.650.770.94	192.028.05	1.533.03	1.1	3.7
	LTR013B	7.650.771.91	192.027.86	1.532.93	1.7	4.1
	LTR013C	7.650.772.89	192.027.68	1.532.84	46.6	7.7
	LTR013D	7,650,773.87	192,027.49	1,532.74	40.4	10.7
	LTR013E	7,650,774.85	192,027.30	1,532.64	30.9	13.3
	LTR013F	7.650.775.82	192.027.11	1.532.55	28.9	17.8
	LTR013G	7,650,776.80	192,026.92	1,532.45	23.3	15.0
	LTR013H	7,650,777.78	192,026.74	1,532.35	17.9	13.5
	LTR013I	7,650,778.76	192,026.55	1,532.25	21.0	16.7
	LTR013J	7,650,779.73	192,026.36	1,532.16	26.0	14.3
	LTR013K	7,650,780.71	192,026.17	1,532.06	33.5	14.0
	LTR013L	7,650,781.69	192,025.98	1,531.96	4.8	26.4
	LTR013M	7,650,782.67	192,025.80	1,531.87	1.3	13.8
	LTR013N	7,650,783.64	192,025.61	1,531.77	1.1	5.1
LTR014	LTR014A	7,650,777.34	192,053.41	1,531.33	1.1	1.1
	LTR014B	7,650,786.28	192,052.73	1,530.49	20.6	15.4
	LTR014C	7,650,785.29	192,052.81	1,530.59	16.6	18.2
	LTR014D	7,650,784.29	192,052.88	1,530.68	15.3	18.7
	LTR014E	7,650,783.30	192,052.96	1,530.77	28.4	19.2
	LTR014F	7,650,782.31	192,053.03	1,530.87	34.6	16.4
	LTR014G	7,650,781.32	192,053.11	1,530.96	27.2	16.2
	LTR014H	7,650,780.32	192,053.18	1,531.05	31.5	12.1
	LTR014I	7,650,779.33	192,053.26	1,531.14	2.0	9.4
	LTR014J	7,650,778.34	192,053.33	1,531.24	2.9	7.6
LTR015	LTR015A	7,650,776.74	192,075.81	1,525.07	20.7	10.5
	LTR015B	7,650,777.73	192,075.65	1,525.04	41.8	8.8
	LTR015C	7,650,778.72	192,075.49	1,525.02	26.9	10.0
	LTR015D	7,650,779.70	192,075.32	1,524.99	12.6	19.2
	LTR015E	7,650,780.69	192,075.16	1,524.97	26.8	13.8
	LTR015F	7,650,781.68	192,075.00	1,524.94	29.1	26.9
	LTR015G	7,650,782.66	192,074.84	1,524.92	28.6	21.3
	LTR015H	7,650,783.65	192,074.68	1,524.90	33.4	16.6
	LTR015I	7,650,784.64	192,074.51	1,524.87	35.2	8.0
	LTR015J	7,650,785.62	192,074.35	1,524.85	28.5	10.8
	LTR015K	7,650,786.61	192,074.19	1,524.82	3.0	15.0
	LTR015L	7,650,787.60	192,074.03	1,524.80	1.3	9.8
LTR016	LTR016A	7,650,779.93	192,097.66	1,533.05	9.3	15.8
	LTR016B	7,650,780.87	192,097.63	1,532.70	13.2	13.7
	LTR016C	7,650,781.81	192,097.60	1,532.36	19.1	16.5
	LTR016D	7,650,782.75	192,097.58	1,532.02	17.3	15.4
	LTR016F	7 650 783 69	192 097 55	1 531 68	21.2	17.6

Trench ID	Trench Sample ID	Northing	Easting	RL	Mn (%)	Fe (%)
	LTR016F	7,650,784.63	192,097.52	1,531.33	18.3	15.6
	LTR016G	7,650,785.57	192,097.49	1,530.99	20.0	15.4
	LTR016H	7,650,786.51	192,097.46	1,530.65	21.6	14.7
	LTR016I	7,650,787.45	192,097.43	1,530.31	21.6	13.3
	LTR016J	7,650,788.39	192,097.40	1,529.97	29.0	14.3
	LTR016K	7,650,789.32	192,097.37	1,529.62	26.9	17.8
	LTR016L	7,650,790.26	192,097.34	1,529.28	34.9	9.7
	LTR016M	7,650,791.20	192,097.31	1,528.94	32.0	15.2
	LTR016N	7,650,792.14	192,097.28	1,528.60	23.6	19.0
	LTR016O	7,650,793.08	192,097.25	1,528.26	1.1	4.4
LTR017	LTR017A	7,650,779.00	192,114.92	1,523.93	1.3	2.6
	LTR017B	7,650,779.96	192,114.91	1,524.20	26.4	10.5
	LTR017C	7,650,780.93	192,114.91	1,524.47	39.5	9.0
	LTR017D	7,650,781.89	192,114.90	1,524.74	41.8	5.7
	LTR017E	7,650,782.85	192,114.89	1,525.02	29.5	14.4
	LTR017F	7,650,783.81	192,114.89	1,525.29	19.6	9.2
	LTR017G	7,650,784.78	192,114.88	1,525.56	34.2	7.6
	LTR017I	7,650,785.74	192,114.88	1,525.83	15.4	17.8
	LTR017J	7,650,786.70	192,114.87	1,526.10	30.0	14.9
	LTR017K	7,650,787.66	192,114.87	1,526.37	30.6	12.2
	LTR017L	7,650,788.63	192,114.86	1,526.65	26.0	12.8
	LTR017M	7,650,789.59	192,114.86	1,526.92	1.2	1.8
LTR018	LTR018A	7,650,781.96	192,122.90	1,526.28	0.9	1.2
	LTR018B	7,650,782.71	192,122.49	1,525.75	39.1	9.8
	LTR018C	7,650,783.45	192,122.09	1,525.22	37.3	9.2
	LTR018D	7,650,784.19	192,121.68	1,524.69	30.0	12.3
	LTR018E	7,650,784.94	192,121.27	1,524.16	33.7	13.3
	LTR018F	7,650,785.68	192,120.87	1,523.63	28.5	13.3
	LTR018G	7,650,786.43	192,120.46	1,523.10	22.3	19.5
	LTR018H	7,650,787.17	192,120.05	1,522.57	33.6	19.6
	LTR018I	7,650,787.91	192,119.65	1,522.04	26.6	21.9
	LTR018J	7,650,788.66	192,119.24	1,521.51	23.9	15.7
	LTR018K	7,650,789.40	192,118.83	1,520.98	30.9	10.1
	LTR018O	7,650,792.38	192,117.20	1,518.86	24.5	9.8
	LTR018P	7,650,793.12	192,116.80	1,518.33	20.4	17.8
	LTR018Q	7,650,793.87	192,116.39	1,517.80	24.6	11.0
	LTR018R	7,650,794.61	192,115.98	1,517.27	33.3	13.2
	LTR018S	7,650,795.35	192,115.58	1,516.74	27.1	14.0
	LTR018T	7,650,796.10	192,115.17	1,516.21	19.2	20.0
	LTR018U	7,650,796.84	192,114.76	1,515.68	20.8	14.9
	LTR018V	7,650,797.59	192,114.36	1,515.15	20.5	18.3
	LTR018X	7,650,799.08	192,113.54	1,514.09	10.6	17.6
	LTR018Y	7,650,799.82	192,113.13	1,513.56	10.0	22.7
LTR019	LTR019A	7,650,781.09	192,135.79	1,521.42	18.8	14.5
	LTR019B	7,650,782.04	192,135.90	1,521.71	27.6	17.2
	LTR019C	7,650,782.99	192,136.02	1,521.99	27.8	16.1
	LTR019D	7,650,783.94	192,136.13	1,522.27	24.9	16.5
LTR020	LTR020A	7,650,784.41	192,147.71	1,525.05	1.1	2.1
	LTR020B	7 650 785 32	192 147 87	1 525 44	n/s	n/s

Trench ID	Trench Sample	Northing	Easting	RL	Mn (%)	Fe (%)
	LTR020C	7,650,786.23	192,148.02	1,525.83	46.6	9.4
	LTR020D	7,650,787.14	192,148.18	1,526.22	30.0	n/s
	LTR020E	7,650,788.04	192,148.34	1,526.60	46.5	9.5
	LTR020F	7,650,788.95	192,148.49	1,526.99	22.9	19.8
	LTR020G	7,650,789.86	192,148.65	1,527.38	29.0	13.7
	LTR020H	7,650,790.77	192,148.81	1,527.77	30.1	17.1
LTR023	LTR023A	7,650,805.90	192,236.44	1,523.27	4.2	4.4
	LTR0023B	7,650,806.81	192,236.02	1,523.22	n/s	n/s
	LTR023C	7,650,807.72	192,235.60	1,523.18	21.8	13.5
	LTR023D	7,650,808.62	192,235.18	1,523.14	23.2	14.3
	LTR023E	7,650,809.53	192,234.76	1,523.10	25.2	17.9
	LTR023F	7,650,810.44	192,234.35	1,523.05	23.0	14.1
	LTR023G	7,650,811.34	192,233.93	1,523.01	16.1	24.1
	LTR023H	7,650,812.25	192,233.51	1,522.97	27.7	30.0
	LTR023I	7,650,813.16	192,233.09	1,522.93	26.4	14.4
	LTR023J	7,650,814.07	192,232.67	1,522.88	36.0	15.6
	LTR023K	7.650.814.97	192.232.26	1.522.84	29.6	14.8
	LTR023L	7,650,815.88	192,231.84	1,522.80	27.0	16.9
	LTR023M	7.650.816.79	192.231.42	1.522.76	9.0	29.3
	LTR023N	7,650,817.70	192,231.00	1,522.71	1.6	41.9
	LTR023O	7,650,818.60	192,230.58	1,522.67	1.7	33.9
LTR024	LTR024A	7.650.815.35	192.277.91	1.526.12	3.0	3.3
	LTR024B	7,650,816.17	192,277.36	1,526.24	37.4	7.2
	LTR024C	7.650.816.99	192.276.80	1.526.36	29.5	9.2
	LTR024D	7.650.817.82	192,276,25	1.526.48	19.3	14.7
	LTR024E	7.650.818.64	192.275.69	1.526.61	30.0	13.9
	LTR024F	7.650.819.46	192.275.13	1.526.73	28.7	14.0
	LTR024G	7,650,820.28	192,274.58	1,526.85	28.4	21.9
	LTR024H	7.650.821.11	192.274.02	1.526.97	23.1	14.2
	LTR024I	7.650.821.93	192.273.47	1.527.09	15.2	11.2
	LTR024J	7,650,822.75	192,272.91	1,527.22	21.9	14.6
	LTR024K	7,650,823.58	192,272.36	1,527.34	20.5	13.5
	LTR024L	7,650,824.40	192,271.80	1,527.46	30.6	11.2
	LTR024M	7,650,825.22	192,271.25	1,527.58	14.7	15.2
	LTR024N	7,650,826.04	192,270.69	1,527.70	24.0	24.2
	LTR024O	7,650,826.87	192,270.14	1,527.83	19.8	22.6
	LTR024P	7,650,827.69	192,269.58	1,527.95	32.8	14.7
	LTR024Q	7,650,828.51	192,269.03	1,528.07	20.4	26.7
	LTR024R	7,650,829.33	192,268.47	1,528.19	38.9	14.9
	LTR024S	7,650,830.16	192,267.92	1,528.31	34.7	15.4
	LTR024T	7,650,830.98	192,267.36	1,528.44	31.8	13.8
	LTR024U	7,650,831.80	192,266.81	1,528.56	17.1	14.2
	LTR024V	7,650,832.63	192,266.25	1,528.68	31.0	19.2
	LTR024W	7,650,833.45	192,265.70	1,528.80	31.9	17.0
	LTR024X	7,650,834.27	192,265.14	1,528.92	23.0	18.8
	LTR024Y	7,650,835.09	192.264.59	1,529.05	9.7	13.5
	LTR024Z	7,650,835.92	192,264.03	1,529.17	1.3	11.6
	LTR024AA	7,650,836.74	192,263.48	1,529.29	32.7	17.8
		7 650 927 56	102 262 02	1 5 20 41	26.7	22.6

	Shaw River	r
The second secon	Manganese Limited	d

Trench Sampl	es					
Trench ID	Trench Sample ID	Northing	Easting	RL	Mn (%)	Fe (%)
	LTR024AC	7,650,838.39	192,262.37	1,529.53	1.3	31.4
	LTR024AD	7,650,839.21	192,261.81	1,529.66	1.9	14.9
	LTR024AE	7,650,840.03	192,261.26	1,529.78	1.2	16.1
LTR025	LTR025A	7,650,820.04	192,307.11	1,518.63	1.1	1.4
	LTR025B	7,650,820.80	192,306.48	1,518.77	22.8	8.5
	LTR025C	7,650,821.56	192,305.84	1,518.91	36.0	6.3
	LTR025D	7,650,822.32	192,305.21	1,519.05	33.3	13.3
	LTR025E	7,650,823.08	192,304.57	1,519.19	30.1	11.5
	LTR025F	7,650,823.83	192,303.94	1,519.33	1.4	40.6
	LTR025G	7,650,824.59	192,303.30	1,519.47	38.4	9.4
	LTR025H	7,650,825.35	192,302.67	1,519.61	20.9	13.1
	LTR025I	7,650,826.11	192,302.03	1,519.75	13.4	16.3
	LTR025J	7,650,826.87	192,301.40	1,519.89	19.0	14.8
	LTR025K	7,650,827.63	192,300.76	1,520.03	18.6	12.5
	LTR025L	7,650,828.39	192,300.12	1,520.17	19.2	15.3
	LTR025M	7,650,829.15	192,299.49	1,520.32	16.5	10.3
	LTR025N	7,650,829.91	192,298.85	1,520.46	14.9	12.9
	LTR025O	7,650,830.67	192,298.22	1,520.60	17.4	14.8
	LTR025P	7,650,831.43	192,297.58	1,520.74	24.4	12.9
	LTR025Q	7,650,832.19	192,296.95	1,520.88	21.0	15.6
	LTR025R	7,650,832.95	192,296.31	1,521.02	23.3	15.9
	LTR025S	7,650,833.70	192,295.68	1,521.16	29.6	11.2
	LTR025T	7,650,834.46	192,295.04	1,521.30	21.3	16.1
	LTR025U	7,650,835.22	192,294.41	1,521.44	25.2	18.6
	LTR025V	7,650,835.98	192,293.77	1,521.58	29.4	14.4
	LTR025W	7,650,836.74	192,293.14	1,521.72	22.6	14.7
	LTR025X	7,650,837.50	192,292.50	1,521.87	22.7	22.7
	LTR025Y	7,650,838.26	192,291.86	1,522.01	22.7	15.2
	LTR025Z	7,650,839.02	192,291.23	1,522.15	23.9	15.5
	LTR025AA	7,650,839.78	192,290.59	1,522.29	28.3	11.3
	LTR025AB	7,650,840.54	192,289.96	1,522.43	22.9	16.9
	LTR025AC	7,650,841.30	192,289.32	1,522.57	27.1	16.0
	LTR025AD	7,650,842.06	192,288.69	1,522.71	23.2	19.9
	LTR025AE	7,650,842.81	192,288.05	1,522.85	29.3	24.3
	LTR025AF	7,650,843.57	192,287.42	1,522.99	27.2	17.3
	LTR025AG	7,650,844.33	192,286.78	1,523.13	24.7	12.8
	LTR025AH	7,650,845.09	192,286.15	1,523.27	25.8	21.3
	LTR025AI	7,650,845.85	192,285.51	1,523.41	28.6	29.4
	LTR025AJ	7,650,846.61	192,284.87	1,523.56	27.8	17.7
	LTR025AK	7,650,847.37	192,284.24	1,523.70	29.3	23.8
	LTR025AL	7,650,848.13	192,283.60	1,523.84	28.3	21.8
	LTR0250AM	7,650,848.89	192,282.97	1,523.98	31.6	24.1
	LTR025AN	7,650,849.65	192,282.33	1,524.12	38.5	9.2
	LTR025AO	7,650,850.41	192,281.70	1,524.26	23.3	22.3
LTR026	LTR026A	7,650,835.77	192,314.83	1,528.57	1.3	1.4
	LTR026B	7,650,836.52	192,314.19	1,528.43	22.6	8.4
	LTR026C	7,650,837.28	192,313.54	1,528.30	14.6	16.9
	LTR026D	7,650,838.03	192,312.90	1,528.16	29.4	10.1
	LTR026E	7,650,838.79	192,312.26	1,528.02	20.2	13.8

Trench ID	Trench Sample	Northing	Easting	RL	Mn (%)	Fe (%)
	LTR026F	7,650,839.54	192,311.61	1,527.89	17.9	16.7
	LTR026G	7,650,840.29	192,310.97	1,527.75	37.9	9.9
	LTR026H	7,650,841.05	192,310.33	1,527.61	23.9	14.3
	LTR026I	7,650,841.80	192,309.68	1,527.48	18.0	15.8
	LTR026J	7,650,842.55	192,309.04	1,527.34	13.8	18.1
	LTR026K	7,650,843.31	192,308.40	1,527.21	22.0	12.3
	LTR026L	7,650,844.06	192,307.75	1,527.07	23.7	10.1
	LTR026M	7,650,844.81	192,307.11	1,526.93	23.3	13.1
	LTR026N	7,650,845.57	192,306.47	1,526.80	24.3	12.8
	LTR026O	7,650,846.32	192,305.83	1,526.66	21.8	20.4
	LTR026P	7,650,847.07	192,305.18	1,526.52	25.4	16.4
	LTR026Q	7,650,847.83	192,304.54	1,526.39	22.7	16.5
	LTR026R	7,650,848.58	192,303.90	1,526.25	13.0	22.3
	LTR026S	7,650,849.33	192,303.25	1,526.12	31.4	13.2
	LTR026T	7,650,850.09	192,302.61	1,525.98	22.9	14.9
	LTR026U	7,650,850.84	192,301.97	1,525.84	23.9	11.2
	LTR026V	7,650,851.59	192,301.32	1,525.71	23.1	9.6
	LTR026W	7,650,852.35	192,300.68	1,525.57	23.1	12.8
	LTR026X	7,650,853.10	192,300.04	1,525.43	24.4	19.1
	LTR026Y	7,650,853.85	192,299.39	1,525.30	27.9	11.7
LTR027	LTR027A	7,650,843.59	192,321.64	1,525.99	2.0	35.1
	LTR027B	7,650,844.46	192,321.20	1,525.77	13.3	11.1
	LTR027C	7,650,845.32	192,320.75	1,525.55	1.0	1.4
	LTR027D	7,650,846.19	192,320.31	1,525.33	33.1	11.4
	LTR027E	7,650,847.06	192,319.86	1,525.11	5.9	36.2
	LTR027F	7,650,847.93	192,319.41	1,524.89	3.0	36.1
	LTR027G	7,650,848.79	192,318.97	1,524.67	33.1	17.0
	LTR027H	7,650,849.66	192,318.52	1,524.45	34.3	7.9
	LTR027I	7,650,850.53	192,318.08	1,524.22	45.3	7.0
	LTR027J	7,650,851.40	192,317.63	1,524.00	20.9	8.4
	LTR027K	7,650,852.26	192,317.19	1,523.78	1.9	7.9
LTR029	LTR029A	7,650,860.22	192,373.36	1,527.82	23.1	9.6
	LTR029B	7,650,861.14	192,373.01	1,527.96	23.1	12.8
	LTR029C	7,650,862.07	192,372.67	1,528.10	24.4	19.1
	LTR029D	7,650,863.00	192,372.32	1,528.24	27.9	11.7
	LTR029E	7,650,863.93	192,371.97	1,528.38	1.4	8.6
	LTR029F	7,650,864.86	192,371.63	1,528.51	2.0	35.1
	LTR029G	7,650,865.78	192,371.28	1,528.65	13.3	11.1
	LTR029H	7,650,866.71	192,370.94	1,528.79	1.0	1.4
LTR031	LTR031A	7,650,867.51	192,424.75	1,527.40	33.1	11.4
	LTR031B	7,650,868.46	192,424.47	1,527.34	5.9	36.2
	LTR031C	7,650,869.42	192,424.19	1,527.27	3.0	36.1
	LTR031D	7,650,870.38	192,423.90	1,527.21	33.1	17.0
	LTR031E	7,650,871.33	192,423.62	1,527.14	34.3	7.9
	LTR031F	7,650,872.29	192,423.34	1,527.08	45.3	7.0
	LTR031G	7,650,873.25	192,423.05	1,527.01	20.9	8.4
	LTR031H	7,650,874.20	192,422.77	1,526.94	1.9	7.9
	LTR031I	7,650,875.16	192,422.48	1,526.88	14.5	26.2
	1700211	7 650 976 12	102 422 20	1 526 91	22.6	7.6

Trench ID	Trench Sample	Northing	Easting	RL	Mn (%)	Fe (%)
LTR032	ITR032A	7 650 872 49	192 466 92	1 527 83	46.0	91
	LTR032B	7.650.873.39	192.466.50	1.527.71	40.7	8.2
	LTR032C	7.650.874.29	192.466.08	1.527.58	40.9	6.9
	LTR032D	7.650.875.19	192.465.65	1.527.45	29.4	7.3
	LTR032E	7,650,876.09	192,465.23	1,527.33	29.1	23.2
	LTR032F	7,650,876.98	192,464.81	1,527.20	27.9	20.7
	LTR032G	7,650,877.88	192,464.39	1,527.08	30.4	8.4
	LTR032H	7,650,878.78	192,463.97	1,526.95	32.6	6.8
	LTR032I	7,650,879.68	192,463.55	1,526.83	38.9	9.5
	LTR032J	7,650,880.58	192,463.12	1,526.70	33.2	23.1
	LTR032K	7,650,881.47	192,462.70	1,526.57	35.4	13.4
	LTR032L	7,650,882.37	192,462.28	1,526.45	38.0	14.2
	LTR032M	7,650,883.27	192,461.86	1,526.32	38.2	9.5
	LTR032N	7,650,884.17	192,461.44	1,526.20	36.6	12.6
	LTR032O	7,650,885.07	192,461.02	1,526.07	35.2	11.8
	LTR032P	7,650,885.96	192,460.59	1,525.95	42.9	5.1
	LTR032Q	7,650,886.86	192,460.17	1,525.82	46.9	9.1
	LTR032R	7,650,887.76	192,459.75	1,525.69	27.4	8.0
	LTR032S	7,650,888.66	192,459.33	1,525.57	19.4	13.5
	LTR032T	7,650,889.56	192,458.91	1,525.44	3.3	40.5
	LTR032U	7,650,890.45	192,458.49	1,525.32	18.3	14.1
LTR033	LTR033A	7,650,892.07	192,487.11	1,528.20	36.6	10.4
	LTR033B	7,650,892.99	192,486.94	1,527.84	40.3	10.6
	LTR033C	7,650,893.90	192,486.77	1,527.48	41.6	9.7
	LTR033D	7,650,894.82	192,486.59	1,527.12	27.1	7.6
	LTR033E	7,650,895.73	192,486.42	1,526.76	38.0	29.6
	LTR033F	7,650,896.65	192,486.24	1,526.39	25.5	9.7
	LTR033G	7,650,897.57	192,486.07	1,526.03	30.2	13.3
	LTR033H	7,650,898.48	192,485.90	1,525.67	28.0	17.3
	LTR033I	7,650,899.40	192,485.72	1,525.31	24.9	19.0
LTR037	LTR037D	7,650,919.95	192,559.24	1,529.18	25.9	18.0
	LTR037E	7,650,920.94	192,559.09	1,529.16	20.2	14.1
	LTR037F	7,650,921.92	192,558.94	1,529.15	24.1	11.7
	LTR037G	7,650,922.91	192,558.79	1,529.13	22.2	18.5
	LTR037H	7,650,923.90	192,558.65	1,529.11	27.9	13.5
	LTR037I	7,650,924.89	192,558.50	1,529.09	26.1	9.3
	LTR037J	7,650,925.88	192,558.35	1,529.08	28.0	7.7
LTR038	LTR038A	7,650,920.59	192,576.17	1,529.64	1.7	9.6
	LTR038B	7,650,921.54	192,575.86	1,529.62	32.6	4.9
	LTR038C	7,650,922.49	192,575.56	1,529.59	25.1	14.4
	LTR038D	7,650,923.44	192,575.25	1,529.57	23.1	16.9
	LTR038E	7,650,924.40	192,574.95	1,529.54	27.8	15.2
	LTR038F	7,650,925.35	192,574.64	1,529.52	26.6	21.5
	LTR038G	7,650,926.30	192,574.33	1,529.49	27.0	13.6
	LTR038H	7,650,927.25	192,574.03	1,529.47	27.7	9.3
	LTR038I	7,650,928.20	192,573.72	1,529.44	1.1	24.1
	LTR038J	7,650,929.16	192,573.42	1,529.42	1.0	5.7
LTR039	LTR039B	7,650,929.17	192,595.03	1,530.08	26.9	17.6
	1780390	7 650 930 05	192 594 57	1 530 00	29.1	23.7

Trench ID	Trench Sample	Northing	Fasting	RI	Mn (%)	Fe (%)
THENCHID		7 650 930 94	192 594 12	1 529 92	28.1	19.8
	LTR039E	7,050,930.94	192,593,67	1,529.83	28.1	27.4
		7,650,932,72	192,593.07	1,529.75	30.9	27.4
		7,050,932.72	192,593.21	1,529.75	25.8	22.2
		7,050,955.00	192,592.70	1,529.07	23.8	22.3
		7,050,954.49	192,592.31	1,529.58	27.8	20.7
LTN040		7,050,929.48	192,012.55	1,530.82	26.2	21.0
		7,050,950.38	192,012.33	1,530.72	20.3	24.7
		7,030,931.27	192,012.11	1,530.05	27.0	10.1
		7,030,932.10	192,011.07	1,530.34	12.1	20.1
		7,030,933.03	192,011.23	1,530.44	18.9	30.1
		7,650,933.95	192,010.79	1,530.35	3.5	20.4
		7,650,934.84	192,010.35	1,530.20	20.7	24.7
	LTR040I	7,650,935.73	192,609.91	1,530.16	27.4	21.7
	LTR040J	7,650,936.63	192,609.47	1,530.07	25.5	23.9
170044	LTR040K	7,650,937.52	192,009.03	1,529.98	28.3	9.1
LIKU41	LTR041B	7,650,932.25	192,647.88	1,531.48	32.2	2.2
	LTR041C	7,650,933.22	192,647.65	1,531.46	23.0	9.5
	LTR041D	7,650,934.19	192,647.42	1,531.43	23.5	9.2
	LTR041E	7,650,935.17	192,647.20	1,531.40	20.3	15.6
	LTR041F	7,650,936.14	192,646.97	1,531.38	25.4	15.1
	LIR041G	7,650,937.11	192,646.74	1,531.35	21.2	18.3
	LTR041H	7,650,938.09	192,646.51	1,531.32	14.8	20.7
	LIR041I	7,650,939.06	192,646.29	1,531.30	19.9	21.3
	LIR041J	7,650,940.03	192,646.06	1,531.27	15.4	16.6
170.10	LTR041K	7,650,941.01	192,645.83	1,531.24	19.3	13.1
LIR042	LIR042A	7,650,937.37	192,669.59	1,532.45	24.7	12.4
	LTR042B	7,650,938.30	192,669.25	1,532.38	35.3	7.8
	LTR042C	7,650,939.24	192,668.91	1,532.32	42.8	11.3
	LTR042D	7,650,940.18	192,668.56	1,532.25	32.4	5.9
	LTR042E	7,650,941.11	192,668.22	1,532.19	10.9	40.1
	LTR042F	7,650,942.05	192,667.88	1,532.12	4.2	22.9
	LTR042G	7,650,942.99	192,667.53	1,532.06	31.4	18.8
	LTR042H	7,650,943.92	192,667.19	1,531.99	39.9	10.9
	LTR042I	7,650,944.86	192,666.85	1,531.93	38.9	10.5
	LTR042J	7,650,945.80	192,666.50	1,531.86	38.9	10.5
	LTR042K	7,650,946.73	192,666.16	1,531.80	23.3	11.0
	LTR042L	7,650,947.67	192,665.82	1,531.73	3.6	39.9
LYR043	LYR043B	7,650,967.01	192,659.15	1,530.73	22.3	24.4
	LYR043C	7,650,967.97	192,658.85	1,530.69	22.3	15.0
	LYR043D	7,650,968.92	192,658.56	1,530.64	18.7	18.3
	LYR043E	7,650,969.88	192,658.26	1,530.59	23.0	24.0
	LYR043F	7,650,970.83	192,657.97	1,530.54	19.7	27.0
	LYR043G	7,650,971.78	192,657.67	1,530.50	16.2	16.2
	LYR043H	7,650,972.74	192,657.37	1,530.45	21.6	15.4
	LYR043I	7,650,973.69	192,657.08	1,530.40	28.4	15.3
	LYR043J	7,650,974.65	192,656.78	1,530.35	28.9	20.0
LTRO44	LTR044A	7,650,947.74	192,679.05	1,532.97	21.5	18.4
	LTRO44B	7,650,948.71	192,678.80	1,532.90	26.3	22.2
	ITPO44C	7 650 949 67	102 678 55	1 5 2 7 8 2	22.0	12.0

Trench ID	Trench Sample ID	Northing	Easting	RL	Mn (%)	Fe (%)
	LTRO44D	7,650,950.64	192,678.31	1,532.76	33.8	18.3
	LTRO44E	7,650,951.61	192,678.06	1,532.68	28.7	6.2
	LTRO44F	7,650,952.57	192,677.81	1,532.61	28.7	4.8
	LTRO44G	7,650,953.54	192,677.57	1,532.54	17.4	30.8
	LTRO44H	7,650,954.51	192,677.32	1,532.47	24.9	10.2
	LTRO44I	7,650,955.47	192,677.07	1,532.40	15.4	23.8
	LTRO44J	7,650,956.44	192,676.83	1,532.33	2.9	10.5
	LTRO44K	7,650,957.41	192,676.58	1,532.26	33.9	9.1
	LTRO44L	7,650,958.37	192,676.34	1,532.19	21.8	13.7
	LTRO44M	7,650,959.34	192,676.09	1,532.11	1.3	23.3
	LTRO44N	7,650,960.31	192,675.84	1,532.04	1.3	22.7
	LTRO44O	7,650,961.27	192,675.60	1,531.97	1.2	14.8
	LTRO44P	7,650,962.24	192,675.35	1,531.90	1.4	19.1
	LTRO44Q	7,650,963.21	192,675.10	1,531.83	1.5	14.0
	LTRO44R	7,650,964.17	192,674.86	1,531.76	1.1	11.4
	LTRO44S	7,650,965.14	192,674.61	1,531.69	1.1	6.9
LTR045	LTR045A	7,650,953.87	192,707.58	1,530.94	45.8	9.4
	LTR045E	7,650,957.22	192,705.39	1,531.00	43.8	6.5
	LTR045F	7,650,958.06	192,704.85	1,531.02	42.9	6.1
	LTR045G	7,650,958.90	192,704.30	1,531.03	24.3	14.8
	LTR045H	7,650,959.73	192,703.75	1,531.05	13.9	18.2
	LTR045I	7,650,960.57	192,703.21	1,531.06	1.3	18.3
	LTR045J	7,650,961.41	192,702.66	1,531.08	1.2	16.1
	LTR045K	7,650,962.24	192,702.11	1,531.10	1.3	14.0
	LTR045L	7,650,963.08	192,701.57	1,531.11	1.5	17.9
	LTR045M	7,650,963.92	192,701.02	1,531.13	n/s	n/s
	LTR045N	7,650,964.76	192,700.47	1,531.14	n/s	n/s
	LTR045O	7,650,965.59	192,699.93	1,531.16	n/s	n/s
	LTR045P	7,650,966.43	192,699.38	1,531.18	n/s	n/s
	LTR045Q	7,650,967.27	192,698.83	1,531.19	n/s	n/s
	LTR045R	7,650,968.10	192,698.29	1,531.21	n/s	n/s
	LTR045S	7,650,968.94	192,697.74	1,531.23	n/s	n/s
	LTR045T	7,650,969.78	192,697.19	1,531.24	n/s	n/s
	LTR045U	7,650,970.62	192,696.65	1,531.26	n/s	n/s
	LTR045V	7,650,971.45	192,696.10	1,531.27	23.5	15.6
	LTR045X	7,650,972.29	192,695.55	1,531.29	28.0	7.7
	LTR045Y	7,650,973.13	192,695.00	1,531.31	26.2	18.3
	LTR045W	7,650,973.96	192,694.46	1,531.32	20.2	14.7
	LTR045Z	7,650,974.80	192,693.91	1,531.34	19.9	13.0
	LTR045AA	7,650,975.64	192,693.36	1,531.35	27.7	22.2
	LTR045AB	7,650,976.48	192,692.82	1,531.37	26.4	10.9
	LTR045AC	7,650,977.31	192,692.27	1,531.39	41.0	6.1
	LTR045AD	7,650,977.93	192,691.89	1,531.39	29.4	15.5
	n/s - Not Sampled					