STONE RESOURCES AUSTRALIA LIMITED

ASX Announcement

5 June 2014

Mineral Resource Review of Brightstar Project Western Australia

Introduce

Stone Resources Australia Limited (Stone) is pleased to announce the completion of a review by CSA Global Pty Ltd (CSA) of its Mineral Resource estimates (MRE), specifically the Alpha, Ben Hur and Delta deposits within the Brightstar Project in Western Australia, located approximately 40km North of Laverton in Western Australia as released to the Australian Stock Exchange (ASX) on the 23^{rd} April 2013 (Figure 1).

Figure 1: Location of the Brightstar Project

The project area is split into Southern and Northern tenements, 480km^2 and 440km^2 , respectively. The Southern group of tenements, located approximately 40 km southeast of Laverton, consist of the Alpha, Beta, and Gamma project areas.

The Northern group of tenements, located approximately 50km north of Laverton include the Delta, Ben Hur (formerly Epsilon) and Eta project areas (Figure 2).

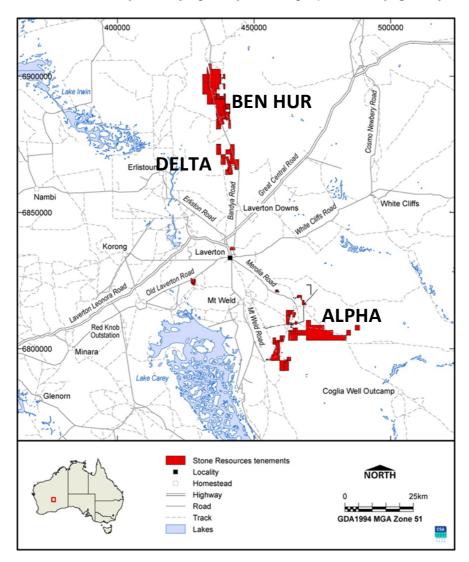


Figure 2: Tenement Diagram for Alpha, Ben Hur and Delta deposits within the Brightstar Project Area

Geology

The area is located in the north Laverton Greenstone Belt on the southern extremity of the Duketon Greenstone Belt (DGB) in the north-eastern sector of the Eastern Goldfields Superterrane of the Yilgarn Craton.

Southern Tenements

The geology of the Alpha Project is comprised of foliated basalt and mafic schist. The upper tertiary surface can be up to 10m thick. It includes recently deposited soil or hardpan up to 4m. Beneath the surface layer is saprolite which has been described as soft, machine-rippable, indurated in places. Basement rock within the area is comprised of mafic volcanic rocks with interleaved narrow units of ultramafic rocks, some dolerite and interflow volcanogenic sediments.

The Beta Project is centred on the Burtville Shear that trends from near Sunrise Dam to Burtville. In the area of Beta this shear is known as the Mikado Shear. The deposit occurs along the Eastern Margin of the Laverton Tectonic zone, which hosts the major gold occurrences (> 1Moz) of Granny Smith, Sunrise Dam, Keringal, and Red October (all owned by other companies). The dominant rock types include a sequence of a metamorphosed ultramafics, high magnesian basalt, tholeitic basalts, dolerite, gabbros, plus minor greywacke and siltstone. Lithological contacts are generally intensely sheared and altered.

The Gamma Project is situated to the east of the Laverton tectonic lineament and is on the eastern limb of the Erlistoun Syncline. The geology is one of a north east trending greenstone belt of mafic/ultramafic volcanic rocks intruded by stocks and dykes of granite and porphyry. Gold mineralization is associated with quartz veins and stringer veins in shear zones that trend north easterly, parallel to the strike of the rocks.

Northern Tenements

The Delta Project occurs within the Duketon Greenstone Belt, formerly known as Cork Tree Well, and lies along the western limb of the Erlistoun synclinal structure. The sequence includes mafic volcanic lavas, tuffs, and tuffaceous sediments with minor interflow graphitic shales and banded iron formation. Mineralization at the Cork Tree Well Mine was hosted within interflow cherts and sediments which contained pervasive pyrite, pyrrhotite and magnetite mineralization. The sediments which host the gold mineralization have been intruded by concordant porphyry sills which extend the length of the mineralized zone.

The Ben Hur Project (formerly Epsilon) is situated in a narrow section of the Duketon Greenstone Belt which strikes north from Laverton to Duketon. The greenstone belt is approximately 100km long and 10km wide in the south broadening to over 40km wide in the north. The local stratigraphy consists of mafic and minor ultramafic units within a sequence of sheared metasediments and felsic volcaniclastic rocks. Major strike shearing is present running the length of the tenement with the gold mineralization being associated with the shearing and localised in a differentiated doleritic sill in the central part of the area.

Exploration and Drilling

The Brightstar Project area has a relatively long exploration history. The exploration methods include geological mapping, geophysical surveying, geochemical sampling, auger sampling, rock chip sampling and drilling. A variety of drilling methods were utilized to explore the Brightstar area. RAB and AC drilling were the major drilling methods. RC drilling was carried out on lesser extent and only a few diamond drillholes were drilled in the area.

At the commencement of drilling in 2011, a new QAQC programme was implemented to ensure that the accuracy and repeatability of sample results being reported by Bureau Veritas were of a standard to be used in feasibility-style resource estimation.

Since 2011, Stone has conducted RC drilling with two rigs for an initial program of approximately 35,000m on its three largest North Laverton Resources – Alpha, Ben Hur and Delta. The purpose of the drilling was to explore the general structure of the deposit, establish the contours of altered rocks and mineralisation associated with them, and also to produce preliminary resource estimates for the deposits.

Stone has completed the following:

• 46 RC drill holes for 5,053m in Alpha area in 2012 - 2013,

- 191 RC drill holes for 21,269m in Ben Hur area in 2012 and
- 75 RC drill holes for 12,033m in Delta area in 2012 (Figure).

Figure 3: Drilling RC Holes at Delta in 2012

Available information, including field checks, indicate that the Brightstar Project area was surveyed during the 2011 - 2013 drilling programmes with all drill collars being set into a surveyed grid and levels recorded.

The drilling rig cyclone was regularly cleaned out and flushed at rod changes in RC drilling program. This was to prevent any smearing of grade between 1m sample intervals. Samples were routinely collected in plastic bags on a single meter basis but composites of 4m were initially collected through spear sampling of the bags and forwarded to the laboratory for assay in a cloth (calico) bag. In many cases the decision to collect single metre samples within all mineralized areas directly for assay may have been made.

Speared and/or riffle split RC and air-core drill samples were submitted for fire assay. There were split repeats of drill samples submitted every 25m in RC and AC. In addition, re-splits of anomalous 4m composites where > 0.3g/t Au were re-sampled/ tube sampled from drill plastic bags into calico bags as 1m sample repeats.

Internal laboratory checks as standard laboratory repeats were conducted. Placer, under the previous Golden Cross JV, collected 1m interval samples by riffle splitting into 2-3kg sub samples for assay. Composite samples over a 2 to 4m interval were collected in some programs by spear sampling the bulk 1m sample. Where composite results exceeded 0.2g/t Au they were re sampled by collecting a 1m riffle split sample.

All holes were logged using Stone's internal standard logging codes.

Sampling and Analysis

Samples were submitted with pre-set numbering allowing for submission of duplicates at regular 25 sample intervals. Duplicate assays were unknown to the laboratories. Sample standards or blanks were submitted in drilling by Stone and repeatability has been determined as being high from the duplicates submitted.

Fire assaying with a 40g charge was completed initially. Screen Fire Assaying was conducted on some drill core samples at Kalgoorlie Assay Laboratories and independently in Perth for intervals where high grade, interpreted 'nuggetty' gold previously had been reported in fire assay results. Screen fire results were generally similar or higher than the fire assay results. The presence of visible gold in diamond drill core was the reason for conducting Screen Fire Assaying.

QAQC processes were checked by CSA for sampling and assaying. The results for Standards, Blanks and duplicates analysis are within the accuracy limits for these analytical techniques and, on the whole, show the quality of the analytical work to be satisfactory.

Resource Estimation

A total of 1,395 RC and 3 diamond drill holes in Alpha area, 929 RC drill holes in Ben Hur and 908 RC drill holes in Delta area were used in the resource modelling. The exploration for the three deposits primarily was on a 20m by 20m drilling pattern, grading to a 25m by 60m patterns at depth. The database used for resource estimation was reviewed and validated for obvious errors by SKR prior to commencing the resource estimation.

The mineralisation constraints have been based on sectional interpretations generated on approximate 20m sections and is based on a 0.3g/t Au nominal lower cut-off grade. The cut-off grade was selected as it represented a natural 'geological' cut-off that captures the anomalous intercepts. It was also selected as suitable when open cut methods are being targeted and recoverable resource estimation is to be considered.

All samples were flagged according to the mineralised domains they fall into based on the constructed wireframes. The most of samples are 1m length. Compositing to 1m length has no effect on the variability of the grade distribution. For the resource estimation, the current model has individually assessed the high-grade outliers. Top Cuts were used to treat the high-grade outliers of Au based on a review of the domain histogram, log probability plot.

Variography and evaluation of suitable estimation parameters based on the final variogram models were undertaken based on 1m composites. The variography indicates that moderate levels of short range variability exist, which is consistent with a vein and stockwork mineralisation style.

Block model was initially created as separate geological block models with varying subblock resolution for mineralisation, waste, dump, weathering and mining boundaries whilst maintaining a majority (parent cell) assigning approach for the Alpha, Ben Hur and Delta deposits, respectively. A block model was created using $5.0 \text{mE} \times 10.0 \text{mN} \times 5.0 \text{mRL}$ parent blocks. Sub-cells were generated down to $0.5 \text{mE} \times 2.0 \text{mN} \times 0.5 \text{mRL}$ as appropriate to honour wireframe lodes and regolith interpretations during model construction.

Ordinary Kriging (OK) was used to estimate 3D blocks for Au variables. Quantitative Kriging Neighbourhood Analysis was used to optimise parameters for the Kriging search strategies.

CSA reviewed the modelling methods, estimation criteria, resource classification and the MRE results. CSA also conducted a site visit and laboratory inspections.

The Alpha, Ben Hur and Delta Mineral Resources have been classified and reported in accordance with The Australasian Code for Reporting of Mineral Resources and Ore Reserves (JORC Code 2012 Version). Resource classification is based on confidence in the geological domaining, drill spacing and geostatistical measures.

There are historic open pits at the Alpha and Delta deposits; The Ben Hur deposit is being considered by Stone as an open pit operation in the near future. CSA has not received open pit design yet.

The qualitative assessment of sandstone and clay content of the mineralised zones has been built into the model. Relative sandstone and clay content affects the processing of the ore. Assumptions are based on DFS metallurgical test work.

The review has confirmed that the methods and results of the MRE and the classification of Measured, Indicated and Inferred resources (Table 1) were properly completed. Together with the supplementary work completed by CSA, the MRE results are confirmed to be in compliance with the 2012 edition of Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (2012 JORC Code).

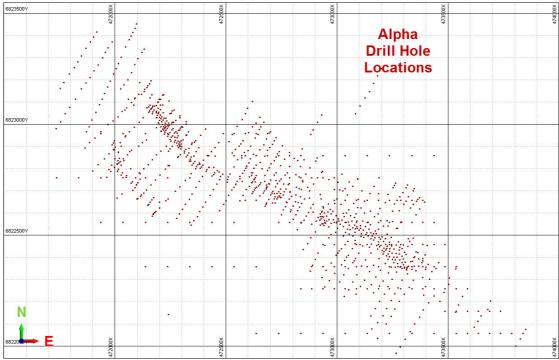
Table 1: Brightstar Project - Mineral Resource Estimate Results for Alpha, Ben Hur and Delta Deposits

Deita Deposit	<u> </u>								
	<i>In-situ</i> Mineral Resources Grade Tonnage Reported above a Cut-off Grade of 0.5g/t Au								
Deposit	Category	Tonnes (kt)	Grade(g/t)	Ounces (koz)					
	Measured	623	1.6	33					
A1 1	Indicated	374	2.1	25					
Alpha	Meas+Ind	997	1.8	58					
	Inferred (approx.)	455	3.3	48					
	Measured	2,434	1.6	125					
D 11	Indicated	1,672	1.4	77					
Ben Hur	Meas+Ind	4,105	1.5	202					
	Inferred (approx.)	1,665	1.6	87					
	Measured	1,220	1.9	76					
Dalta	Indicated	944	1.9	57					
Delta	Meas+Ind	2,164	1.9	133					
	Inferred (approx.)	1,696	1.9	104					

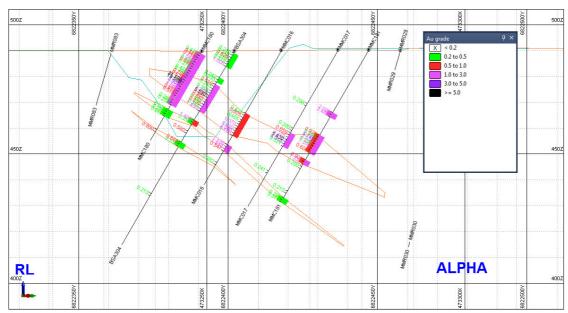
For further information, please contact:

Yong Han, Director, CEO Wenhua Shan, Chief Geologist

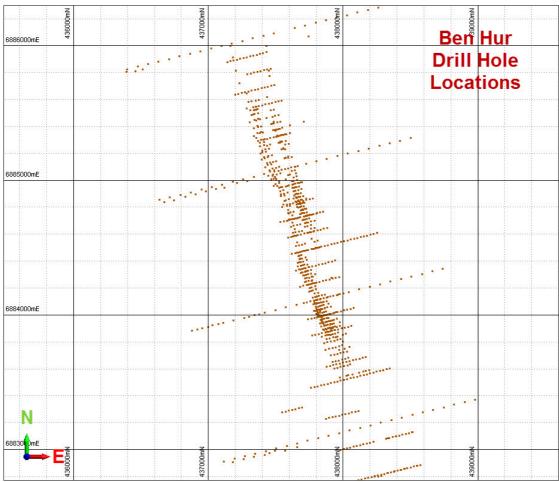
Sheng Lu, Deputy CEO & Joint Company Secretary

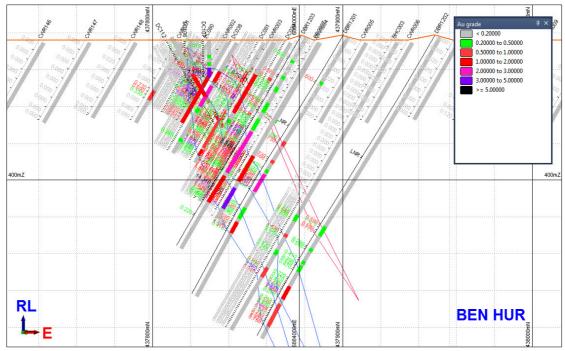

Tony Lau Wai Ming, Joint Company Secretary

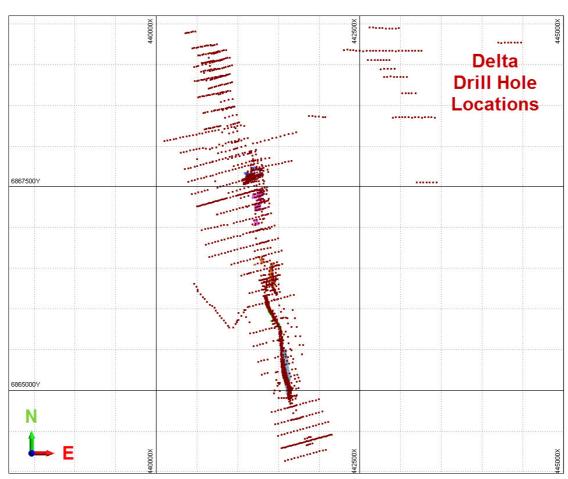
Telephone: 0061-8-9277 6008; Fax: 0061-8-9277 6002

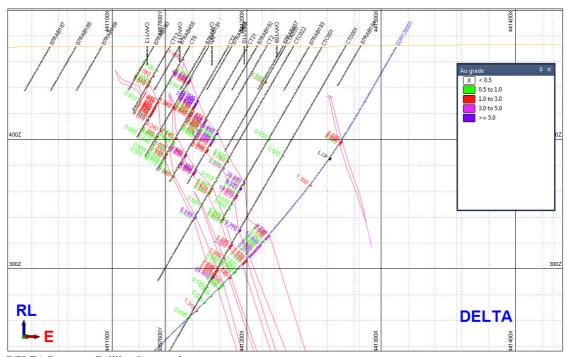

Company email address: info@stoneral.com.au

Competent Persons Statement


The information in this report that relates to Mineral Resources is based on information compiled by Dr. Bielin Shi, who is a member of the Australasian Institute of Mining and Metallurgy and of the Australian Institute of Geoscientists. Dr. Shi is an employee of CSA Global Pty. Ltd. Dr. Shi has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person (CP) as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr. Shi consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.


ALPHA Resource Drilling


ALPHA Resource Drilling Intersection


BEN HUR Resource Drilling

BEN HUR Resource Drilling Intersection

DELTA Resource Drilling

DELTA Resource Drilling Intersection

	ALPHA Drill Hole Collars									
Hole_ID	East	North	RL	Azimuth	Dip	Depth (m)				
SAR0001	473272.049	6822531.633	490.505	213.8	-62.7	160				
SAR0401	473230.069	6822542.576	490.243	208.6	-53	140				
SAR0601	473197.084	6822565.521	490.531	208.1	-58	160				
SAR1001	473124.362	6822601.418	490.645	208.3	-56.5	170				
SAR1201	473092.26	6822625.176	489.915	209	-57.4	160				
SAR1202	473051.303	6822559.509	489.898	211.3	-55.4	80				
SAR1401	473028.175	6822598.435	489.919	207.5	-57.6	120				
SAR1403	473006.97	6822564.327	489.78	211.3	-60.3	75				
SAR1601	472962.954	6822569.177	489.302	209.7	-60.5	70				
SAR1801	472960.82	6822641.653	489.894	208	-59	150				
SAR1803	472925.14	6822584.547	489.167	209	-59.9	70				
SAR20001	470066.619	6824531.677	474.684	235.1	-60.2	120				
SAR20002	470135.129	6824574.481	474.624	232.1	-61.5	120				
SAR20003	470201.513	6824616.29	473.897	233.7	-58.2	108				
SAR20004	470271.269	6824659.332	473.895	235.3	-60.8	120				
SAR2601	472817.483	6822716.289	491.334	208.2	-58.5	122				
SAR2603	472793.743	6822676.038	488.551	208.6	-59	80				
SAR2801	472780.117	6822729.627	488.935	209.3	-59.4	40				
SAR3201	472683.276	6822725.848	488.165	208.7	-61.6	140				

	ALPHA Drill Hole Collars									
Hole_ID	East	North	RL	Azimuth	Dip	Depth (m)				
SAR4001	472570.582	6822847.629	487.036	206.7	-58.8	120				
SAR5005	472449.898	6822856.315	486.708	216.2	-61.9	120				
SAR5801	472297.551	6822926.018	488.936	213.5	-60.7	70				
SAR5802	472322.325	6822952.982	487.679	218	-61	100				
SAR6002	472285.357	6822972.147	488.128	216	-60.7	70				
SAR6003	472321.071	6823011.595	486.404	218.8	-60.9	130				
SAR6201	472291.22	6823038.05	485.724	218.5	-61.3	110				
SAR6203	472256.328	6823000.164	487.986	218.8	-62.9	70				
SAR6401	472257.126	6823060.354	485.259	221.2	-62.3	120				
SAR6403	472228.016	6823028.45	486.013	217.8	-60.9	70				
SAR6601	472243.937	6823105.429	485.021	218.8	-63.9	135				
SAR6801	472214.467	6823131.833	484.307	218.7	-60.1	135				
SAR6802	472169.578	6823083.403	484.905	219.6	-59.3	70				

	BEN HUR Drill Hole Collars								
HoleID	East	North	RL	Azimuth	Dip	Depth (m)			
DBR0301	437840.2	6884146	478.021	256	-60	127			
DBR0302	437864.6	6884152	477.971	256	-60	157			
DBR0401	437854.8	6884098	478.391	256	-60	127			
DBR0402	437876.8	6884103	478.405	256	-60	151			
DBR0403	437807.6	6884087	478.025	256	-60	66			
DBR0404	437840.3	6884094	478.178	256	-60	91			
DBR0701	437798.1	6884189	477.442	256	-60	114			
DBR0801	437884.2	6884055	478.531	256	-60	156			
DBR0802	437909.2	6884060	478.74	256	-60	186			
DBR11307	437522	6885485	477.195	256	-60	139			
DBR11701	437343.6	6885495	475.648	256	-60	96			
DBR11702	437367	6885498	475.717	256	-60	132			
DBR11705	437461.4	6885519	476.482	256	-60	78			
DBR11706	437485.8	6885527	476.747	256	-60	102			
DBR1201	437900	6884007	478.861	256	-60	163			
DBR1202	437948.2	6884020	478.847	256	-60	190			
DBR1203	437878.3	6884000	478.712	256	-60	133			
DBR12101	437332.2	6885543	475.361	256	-60	103			
DBR12102	437356.8	6885547	475.545	256	-60	24			
DBR4406	438053.2	6883631	481.259	256	-60	198			
DBR4701	437613.6	6884657	480.273	256	-60	48			
DBR4702	437634.1	6884663	480.467	256	-60	78			
DBR4703	437658.4	6884669	480.633	256	-60	103			
DBR4704	437681.8	6884674	480.838	256	-60	127			
DBR4705	437762.3	6884694	481.724	256	-60	103			
DBR4706	437786.9	6884700	481.856	256	-60	127			
DBR5505	437697.3	6884783	480.767	256	-60	87			
DBR5506	437725.5	6884789	481.061	256	-60	102			

BEN HUR Drill Hole Collars								
HoleID East North RL Azimuth Dip Depth (n								
DBR5901	437606.1	6884812	479.859	256	-60	84		
DBR9701	437437.5	6885257	476.789	256	-60	126		
DBR9702	437460	6885264	476.761	256	-60	162		
DBR9705	437534.5	6885289	477.558	256	-60	78		
DBR9706	437572.7	6885291	477.977	256	-60	114		

	DELTA Drill Hole Collars									
Hole_ID	East	North	RL	Azimuth	Dip	Depth (m)				
SDR098801	441723.445	6864939.878	470.737	255	-60	138				
SDR099601	441714.507	6865019.833	471.088	255	-60	160				
SDR099602	441748.632	6865029.808	469.501	255	-60	190				
SDR100401	441720.855	6865103.974	469.751	255	-60	204				
SDR100402	441757.056	6865114.556	468.637	255	-60	241				
SDR101201	441697.951	6865181.058	469.836	255	-60	162				
SDR101202	441732.145	6865191.335	468.961	255	-60	186				
SDR105201	441624.006	6865574.949	469.482	255	-60	157				
SDR106001	441618.105	6865656.598	469.988	255	-60	151				
SDR106801	441586.064	6865721.194	469.263	255	-60	169				
SDR107601	441616.711	6865821.497	472.728	255	-55	229				
SDR112401	441473.356	6866278.142	469.925	255	-60	97				
SDR113201	441422.114	6866349.403	469.923	255	-60	79				
SDR113202	441464.315	6866360.722	470.221	255	-60	114				
SDR113203	441485.825	6866366.218	470.295	255	-60	138				
SDR120401	441294.886	6867062.451	470.332	255	-60	130				
SDR120801	441307.451	6867106.077	470.484	255	-60	138				
SDR121201	441357.09	6867159.882	470.727	255	-60	117				
SDR122001	441335.796	6867237.936	470.882	255	-60	174				
SDR122002	441377.425	6867250.478	471.137	255	-60	210				
SDR122801	441316.142	6867317.097	470.506	255	-60	204				
SDR122802	441349.598	6867325.969	470.734	255	-60	240				
SDR123601	441269.704	6867387.131	470.604	255	-60	138				
SDR123602	441353.009	6867409.726	470.855	255	-60	222				
SDR124001	441358.754	6867452.359	470.732	255	-60	192				
SDR124401	441357.487	6867493.302	470.925	255	-60	150				
SDR125201	441320.187	6867565.683	471.179	255	-60	192				
SDR126206	441170.452	6867649.513	470.507	255	-60	120				
SDR126801	441120.2	6867677.209	470.341	255	-60	138				
SDR126802	441172.721	6867691.376	470.514	255	-60	140				
SDR126803	441244.768	6867712.177	470.838	255	-60	32				
SDR126804	441316.015	6867730.608	471.099	255	-60	120				
SDR127201	441164.525	6867731.842	470.334	255	-60	120				
SDR127202	441227.041	6867748.592	470.618	255	-60	120				

DELTA Drill Hole Collars							
Hole_ID East North RL Azimuth Dip Depth (m)						Depth (m)	
SDR127203	441293.681	6867767.769	470.894	255	-60	126	

ALPHA Significant Intersections								
Hole_ID	mFrom	mTo	Thickness (m)	Au (g/t)				
SAR0001	83	84	1	2.07				
SAR0401	111	113	2	2.59				
SAR0601	109	110	1	2.00				
SAR0601	111	112	1	1.27				
SAR0601	117	121	4	11.84				
SAR0601	125	128	3	9.79				
SAR1001	124	125	1	1.26				
SAR1001	157	158	1	4.31				
SAR1201	126	127	1	1.02				
SAR1201	127	128	1	3.66				
SAR1201	129	130	1	1.89				
SAR1801	101	103	2	2.12				
SAR2002	49	50	1	1.84				
SAR2601	106	108	2	2.47				
SAR2601	109	110	1	1.58				
SAR3003	42	43	1	1.09				
SAR3201	39	40	1	1.74				
SAR4001	46	48	2	2.58				
SAR4001	52	53	1	4.48				
SAR4001	54	55	1	1.10				
SAR5801	40	41	1	1.21				
SAR6203	50	51	1	2.32				
SAR6401	84	87	3	3.20				
SAR6403	43	44	1	1.67				
SAR6601	112	115	3	6.27				
SAR20005	88	90	2	1.82				
SAR20705	81	82	1	1.80				

	BEN HUR Significant Intersections								
Hole_ID	mFrom	mTo	Thickness (m)	Au (g/t)					
DBR0403	37	38	1	12.6					
DBR0403	38	39	1	12.8					
DBR0404	63	64	1	3.95					
DBR0404	70	71	1	17.87					
DBR0404	71	72	1	8.67					
DBR0701	32	33	1	4.96					
DBR0804	46	47	1	3.71					
DBR0804	60	61	1	3.24					

DBR0804	67	68	1	13.8
DBR0805	78	79	1	5.92
DBR0805	85	86	1	5.63
DBR0805	87	88	1	4.85
DBR10105	66	67	1	5
DBR10105	77	78	1	4.37
DBR10506	76	77	1	6.73
DBR10506	77	78	1	18.2
DBR10506	80	81	1	4.48
DBR10905	55	56	1	3.97
DBR1101	29	30	1	4.54
DBR1105	59	60	1	17
DBR1105	64	65	1	5.29
DBR11301	73	74	1	3.91
DBR11702	131	132	1	4.17
DBR1201	92	93	1	13.13
DBR1201	94	95	1	3.88
DBR1201	121	122	1	3.37

DELTA Significant Intersections								
Hole_ID	mFrom	mTo	Thickness (m)	Au (g/t)				
SDR100401	169	170	1	1.15				
SDR102001	88	89	1	1.7				
SDR102001	125	126	1	1.87				
SDR102001	126	127	1	2.77				
SDR102001	127	128	1	1.69				
SDR102002	169	170	1	1.61				
SDR102002	171	172	1	3.12				
SDR102002	172	173	1	3.57				
SDR102002	173	174	1	1.05				
SDR102801	119	120	1	1.23				
SDR102801	120	121	1	1.07				
SDR102801	121	122	1	1.29				
SDR102802	153	154	1	1.58				
SDR102802	155	156	1	14.2				
SDR102802	156	157	1	7.47				
SDR102802	157	158	1	3.04				
SDR102802	158	159	1	1.14				
SDR102802	160	161	1	5.13				
SDR102802	161	162	1	1.13				
SDR103601	120	121	1	3.34				
SDR103601	121	122	1	4.41				
SDR103601	122	123	1	1.2				

SDR103601	123	124	1	1.01
SDR103601	124	125	1	15.24
SDR103601	125	126	1	8.91
SDR103601	126	127	1	2.81
SDR103601	127	128	1	1.66
SDR103601	130	131	1	1.51
SDR103601	131	132	1	3.54
SDR103601	132	133	1	2.05
SDR103601	133	134	1	16.32
SDR103601	134	135	1	8.11
SDR103601	135	136	1	10.12

Appendix JORC Table 1 Compliance

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Criteria	- JOKC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representatively and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Alpha deposit was drilled primarily in a nominal 20m by 20m spacing in areas; a total of 1349 historic RC drill holes, and 46 infill RC drill holes drilled in 2012. The Ben Hur deposit was drilled primarily in a nominal 20m by 20m and 40m by 20m spacing in areas; a total of 929 historic RC drill holes, and 191 infill RC drill holes drilled in 2012. The Delta deposit was drilled primarily in a nominal 20m by 20m and 40m by 20m spacing in areas; a total of the historic RC drill holes, and 75 infill RC drill holes drilled in 2012. The drilling programs in Alpha, Ben Hur and Delta areas were designed to optimally intersect the mineralised zones. Sampling was carried out under Stone's supervision according to its QAQC protocols and procedures. This included the use of field duplicates, commercially prepared blanks and certified reference materials. The orientation of the mineralisation had been determined by mapping and previous diamond and RC drilling. This was confirmed in the latest drilling campaign. Drill core was split to produce samples ranging from 2.5 to 3.5kg in weight. In the assay laboratory the samples were crushed pulverised and subsampled to produce a 50g charge for fire assaying with an AAS finish. This gave a total determination of Au.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample	 Method of recording and assessing core 	 A record of qualitative sample

Criteria	JORC Code explanation	Commentary
recovery	 and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	recovery and moisture content was recorded by field assistants under the supervision of the rig geologist. • Weight checks were done periodically at the rig. Overall sample weight and quality was good. The rig geologist closely monitored the rig to ensure the entire sample was collected in both bulk plastic & calico bag prior to removal from the cyclone splitter, and action was taken if sample weights showed marked variations.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RC chips were logged at the drill-rig-site for main/subordinate lithology, colour, grainsize, regolith, alteration, oxidation and mineralisation. Geological logging is both qualitative and quantitative in nature. The lithology, colour, grain size, regolith, alteration, oxidation, veining and mineralisation were recorded. Sulphide and vein content were logged as a percentage of the interval. Representative chips were collected in chip trays for each 4m interval and retained on site (no photographs). All of the drilling was geologically logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 The RC samples were sub-sampled using a rig mounted, self-levelling cone splitter. The vast majority of the samples were dry with rare moist and wet samples recorded on the sampling sheet. The sample preparation followed industry best practice in sample preparation involving oven drying and pulverisation of the entire ~3kg sub-sample using LM5 grinding mills to a grind size of 85% passing less than 75 microns. Field duplicates were collected and assessed to determine cone splitter repeatability; results showed reasonable repeatability. Commercially prepared and certified reference materials (standards and blanks) along with field duplicates were inserted at a ratio of 1:20 into the sample string. The QAQC results from this program were considered to be acceptable. Sample recoveries were recorded by Stone's field staff. Apertures in

Criteria	JORC Code explanation	Commentary
		the cone splitter were adjusted to maintain a sample weight between 2.5 and 3.5kg. Periodic sample weighing was carried out to ensure an even split between duplicate samples by the cone splitter. • The sample sizes are considered to be appropriate and to correctly represent mineralisation at the deposit based on the style of mineralisation (lode/ mesothermal gold), the thickness and consistency of the intersections, the sampling methodology and assay ranges returned for gold.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 A 50g charge for the Fire Assaying was employed. This is considered to be an appropriate sub-sample size for a total determination of gold. No geophysical tools were used to determine any element concentrations. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 micron was achieved. Laboratory quality control involved the use of certified reference material, blanks, splits and replicates as part of the in house procedures. These results were used along with Stone's quality control data to illustrate that there was no systematic bias and that results had an acceptable level of precision and accuracy.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 The Senior Exploration Geologist from Stone has visually verified the significant intersections using material collected in the diamond cores and RC chip trays. There were twinned holes drilled at Ben Hur deposit in 2012; No twinned holes were drilled at the Alpha and Delta deposit; The primary data was collected by using logging software that was installed on a Toughbook™. This software contained standard lookup tables for the logging codes. The collected data was subsequently validated according to Stone's procedures prior to being sent to Kalgoorlie Assay Laboratories. At this point further validations were carried out prior to uploading the

Criteria	JORC Code explanation	Commentary
		data into a SQL database.No adjustments were made to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Post drilling a hand-held GPS was used to record the drill hole coordinates. These locations were used by Stone's Mine Surveyors who employed a Real Time Kinematic (RTK) Differential GPS to pick up the collar of the holes. The RTK method provides positional precision up to 10mm. Down-hole surveys were carried out every 30m using a Camteq Electronic Multi-shot camera. Regular re-surveying was carried out to check the quality of readings. All work was carried out in the Geocentric Datum of Australia 1994 (GDA94) within the zone 51 projection.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 This programme of resource definition drilling conducted at the Alpha, Ben Hur and Delta deposits were on an approximate 20m by 20m spacing, along strike and down dip. 20m by 20m spacing at the Alpha, Ben Hur and Delta deposits has been considered sufficient to establish geological and grade continuity according to the Australian JORC 2012 code; This code has been used as a reference on reporting results to the ASX and the public. No compositing has been applied to the exploration samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Pit mapping and structural measurements have been taken at the deposits and they confirm the orientation of mineralisation defined by the drilling. Based upon the above information the drilling for both programs has been largely perpendicular to the mineralisation with some minor exceptions due to constraints enforced by mining activities and infrastructure. No significant orientation bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	Once the samples had been collected and checked by the field staff they were placed into polyweave bags. These samples were then taken to a secure

Criteria	JORC Code explanation	Commentary
		laydown area at the Alpha, Delta mine site. Toll Priority transported the samples to Perth to the assay laboratory who stored them in a locked yard. A series of well tested digital and paper tracking mechanisms were used by Stone to track the progress of the sample batches.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 An external review was carried out by CSA in July 2012. The sampling techniques and quality of samples were found to be satisfactory.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Alpha deposit is located in M38/1058, M38/1056, M38/1057, M38/968, and P38/3834 mining licences. The Ben Hur deposit is located in M38/339 mining licences. The Delta deposit is located in M38/346 mining licences. Stone Gold Mining Limited has a 100% interest in these tenements. The tenements are in good standing with no known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration by other parties has been reviewed and taken into account when exploring. Previous parties conducted rock chip sampling, mapping and drilling. This report only concerns exploration results collected by Stone.
Geology	Deposit type, geological setting and style of mineralisation.	 Gold mineralisation is both structurally and lithologically controlled and occurs in a series of stepped lodes. The mineralized zone at Alpha is based on a single, shear hosted lode. The lode is shallow north dipping within the oxide position and steepens to around 50° to 60° in fresh rock. The shear geometry plunges around 10° to 150° to the northwest (300°). The main mineralised zone at Ben Hur is contained within a vertical to steeply east dipping, sheared quartz dolerite unit which is 40m to 50m thick and strikes north northwest over the length of the lease. The mineralization in Delta deposit is associated with steep east dipping sedimentary units, in particular the chert horizon located on the footwall of the sediment sequence.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of 	• Refer to Tables 1 & 2 and Section 1.

Criteria	JORC Code explanation	Commentary
Data aggregation	the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results,	All of the reported intersections
methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	have a lower cut-off of 0.5g/t with a maximum internal dilution of two consecutive samples. No top-cuts were applied. Individual 1m results >1 g/t Au are also included. Higher grade (generally >5g/t) intervals within results were reported alongside the overall intersection, where a substantial proportion of the total gold in an intersection was contained within the high-grade sub-interval(s) or grades were materially higher than adjacent assays. For example, in a run of 1-2 g/t results, assays over 5.0 g/t Au would be reported as a sub-interval; in a run of 2-6 g/t assays, results >10 g/t Au would be reported as a sub-interval. In these instances generally a maximum internal dilution of two consecutive samples was used. No top cuts were applied. No metal equivalents were used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The main zone of mineralisation at the Alpha, Ben Hur and Delta deposits are broadly 310°-trending structure that dips approximately 65°to the south-west. Slightly obliquely striking mineralisation is most strongly formed in the footwall but also exists in the hangingwall to the main zone. Drill holes, where possible were designed to be perpendicular to the lodes, however, in some cases local infrastructure inhibited this. All of the intersections are given in down hole metre lengths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to previous announcements

Criteria	JORC Code explanation	Commentary
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results were reported for the entire drill programs.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that has been collected is considered to be meaningful or material to this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Currently, over 4,000m further Phase II resource definition diamond and RC drilling is planned for the Ben Hur deposit. Follow up drilling is currently being finalised so is not shown.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 The database is maintained by site personnel. The exploration database used for the resource estimation has been validated and considered accurate.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The Competent Person for this update is a full time employee of CSA Global and undertakes regular site visits ensuring industry standards of the Mineral Resource estimation process from sampling through to final block model.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 Geological and mineralisation interpretations were reviewed by CSA geologist. The wireframes were generated based on cross sections widths of 20m – 20m spacing. This was based on exploration and grade control drilling patterns. Mineralisation cut-off grades of 0.3g/t Au combined with the geological logging were used to define the mineralised envelopes. The geological interpretation of mineralised boundaries is considered robust and alternative interpretations do not have the potential to impact significantly on the Mineral Resources.
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Alpha deposit mineralisation extends from 472,000mE to 473,500mE, 6,822,460mN to 6,823,200mN, and 30m below surface. The deposit with multiple lodes generally strikes towards NW with a strike length of approximately 1,500m, dipping towards the northeast at 30° -45° with and having a vertical extent of about 100m. The Ben Hur deposit mineralisation extends from 437,000mE to 438,000mE, 6,883,500mN to 6,885,600mN, and 30m below surface. The deposit with multiple lodes generally strikes towards NW with a strike length of approximately 2,000m, dipping towards the northeast at 70° -80° with and having a vertical extent of

Criteria	JORC Code explanation	Commentary
		about 120m. The Delta deposit mineralisation extends from 441,000mE to 442,000mE, 6,865,000mN to 6,867,500mN, and 30m below surface. The deposit with multiple lodes generally strikes towards NW with a strike length of approximately 2,000m, dipping towards the northeast at 70° - 80° with and having a vertical extent of about 100m.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 Im composites was created and used for the statistical, variography analyses and estimation. Thorough univariate statistical analysis of density weighted, Im, mineralogy flagged, downhole composites has been completed for gold and for all lodes and top-cuts established where applicable. Statistical analysis indicated that outlier management was crucial to prevent severe high grade smearing that could result in potential overestimation for some elements. The approach used has been capping (Top-cuts were defined by domain following thorough examinations of histograms, probability curves and the spatial locations of the outliers). Top cuts ranged from 5g/t to 100g/t based on analysis of individual lodes statistics. Variogram modelling completed within Isatis™ software and used to define the characterization of the spatial continuity of gold within all lodes and parameters used for the interpolation process. Variogram model are cross-validated to ensure parameters are accurate. Quantitative Kriging Neighbourhood analysis (QKNA) using goodness of fit statistics to optimize estimation parameters has been undertaken. Parameters optimised include block size, search parameters, number of samples (minimum and maximum) and block descritization. Directional ranges have been determined from variogram modelling and are used to constrain the search distances used in block

Criteria	JORC Code explanation	Commentary
Criteria	JORC Code explanation	interpolation, incorporating geologists' interpretation of ore geometry and continuity. Estimation search strategies implemented have sought to ensure robust estimates while minimising conditional bias. Three search estimation runs are used with initial short-search runs extending the sample influence in later runs. Block estimation has been completed within Datamine™ Studio 3 Resource Modelling software. Three dimensional mineralisation wireframes were completed within Micromine™ software and imported into Datamine™. These wireframes are used as hard boundaries for the interpolation. Ordinary Kriging using a local dynamic anisotropy search is used for block grade estimates using uniquely coded 1m composite data for respective lodes. All block estimates are based on interpolation into parent blocks. Parent block estimates are then assigned to sub-blocks. Mineral Resource estimation does not include any form of dilution. Block model extends from local grid 4,780mE to 5,400mE, 10,800mN to 12,700mN and vertical from800mRL to 1,4000mRL. Only gold was estimated. No selective mining units were assumed in this estimate. Standard model validation has been completed using visual and numerical methods and formal peer review sessions by key geology staff.
		review sessions by key geology staff.
		 Easting, northing and elevation swath plots have been generated to check input composited assay means for block estimates within swath windows. A comparison of block volume weighted mean versus the drillhole cell de-clustered mean grade of the

Criteria	JORC Code explanation	Commentary
		composited data was undertaken. • Efficiency models using block Kriging Efficiencies (KE) and Slope of Regression (ZZ) were used to quantitatively measure estimation quality to ensure the desired level of quality of estimation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages are estimated on a dry basis.
Cut-off parameters	• The basis of the adopted cut-off grade(s) or quality parameters applied.	 The resource is not constrained by economic cut off grades. The nominal 0.3g/t Au boundary applied to the mineralisation zone is based on analysis of the sample population and local geology.
Mining factors or assumptions	• Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 There are historic open pits at the Alpha and Delta deposits; The Ben Hur deposit is being considered by Stone as an open pit operation in the near future. CSA has not received open pit design yet.
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 The qualitative assessment of sandstone and clay content of the mineralised zones has been built into the model. Relative sandstone and clay content affects the processing of the ore. Assumptions are based on DFS metallurgical test work.
Environmen-tal factors or assumptions	• Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	• The Alpha, Ben Hur and Delta projects are designed with a fully lined Tailings Storage Facility and it is planned that all sulphide material mined from the operation will be processed in the concentrator, eliminating any PAF on the waste dumps.

Criteria	JORC Code explanation	Commentary
Bulk density Classification	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Most dry bulk density determinations have come from samples of the diamond drill holes over a range of RL's. They have been determined using industry standard methods of dried/sealed weight of core or rock sample in water versus the dry weight in air.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 The Alpha, Ben Hur and Delta Mineral Resources have been classified and reported in accordance with The Australasian Code for Reporting of Mineral Resources and Ore Reserves (JORC Code 2012 Version). Resource classification is based on confidence in the geological domaining, drill spacing and geostatistical measures. The initial classification process was based on an interpolation distance and minimum samples within the search ellipse. The main components are summarised as follows: Initial classification: The resource was classed as Inferred if the average weighted sample distance was greater than 50 m. The resource was classed as Indicated if the average weighted sample distance was between 25 m and 50 m. Numbers of drill holes -< 2 Indicated and Inferred resources downgraded one class. The initial classification was reviewed visually. Based on the initial classification, three solids rescat_ind and rescat_inf were created to define Measured, Indicated and Inferred resources. This defined resource categories based on a combination of data density and geological confidence.
Audits or reviews	The results of any audits or reviews of Mineral Resource estimates.	 The Mineral Resource and estimation procedures prepared by SKR have been reviewed by CSA. The process for geological modelling, estimation and reporting of Mineral Resources has been

Criteria	JORC Code explanation	Commentary
		subject to an independent, external review by CSA. CSA undertook a peer review during 5th – 6th January 2014 and found the process to be industry standard with minor recommendations as part of continuous improvement.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The Mineral Resources have been reported in accordance with the guidelines of the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves and reflects the relative accuracy of the Mineral Resources estimates. The current Mineral Resource model represents a robust global estimate of the remaining, in-situ gold mineralisation for the Alpha, Ben Hur and Delta deposits. Existing operating reports of achieved production verse estimate is positive. It is recommended to use optimised pit shells as a guide to create drilling programmes that maximise the conversion from lower category resources (Inferred to Indicated) and reduces mining risk attributed to data density and quality. Careful consideration of mining dilution is warranted given the tenor, style and orientation of the mineralised lodes.

Section 4 Estimation and Reporting of Ore Reserves - -Not Applicable

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Criteria

JORC Code explanation

Commentary