

ASX ANNOUNCEMENT

30 July 2014

Focus Confirms Strong Results from Coolgardie and Laverton **Exploration Campaigns**

Focus Minerals Ltd. (ASX: FML) is pleased to announce results from recent exploration drilling campaigns conducted on priority targets at Coolgardie and Laverton.

Highlight Intersections								
Coolgardie Gold Project								
	8.3m @ 13.46g/t Au from 268.24m in BRRCD007							
Duillia n4	2.3m @ 25.55g/t Au from 361.15m in BRRCD006							
Brilliant	3.0m @ 6.61g/t Au from 234m in BRRCD005							
	3.0m @ 4.17g/t from 191m in BRRCD008							
Bonnie Vale	6.0m @ 9.45g/t Au from 158m in BONC035							
Bonnie vale	6.0m @ 7.12g/t from 95m in BONC033							
Laverton Gold Pr	roject							
Lancefield	2.0m @ 59.76g/t Au from 50m in LFRC002							
Fish	2.9m @ 8.17g/t from 455m in FHDD099							
Craiggiemore	4.7m @ 9.28g/t from 212m in CMDD348							

During its recent exploration campaigns the Company drilled 43 holes at Laverton for 6,440m of RC and 2,376m of diamond core. At Coolgardie, 31 holes were drilled for 6,698m of RC and 1,215m of diamond core.

Drilling commenced in late March and finished in June, with three projects drilled in Coolgardie and six in Laverton. The programs varied from tenement maintenance work to deep diamond drilling. A full table of significant intersections is attached.

"We are pleased to see such exciting results from our first major exploration drilling campaign for the year" commented Focus Minerals Interim CEO, Wanghong Yang, "These results bolster Focus' commitment to a thorough exploration program and we will follow them up with additional drilling on our advanced targets."

Focus has planned additional RC and diamond core drilling for the coming quarter. It is also in the final stages of developing plans for copper exploration in the Admiral Hill trend (Laverton) and a geophysical investigation of the Company's Nepean Nickel project. Both of these programs are expected to commence in the coming quarter.

Coolgardie Gold Project*

Bonnie Vale

13 holes were drilled at Bonnie Vale for 2,874m (Figure 3 presents one of the holes). The program was designed to test extensions to high-grade mineralised reefs historically mined underground, including the Westralia, Bonnie Vale and Vale of Coolgardie mines. Bonnie Vale is one of the largest and highest grade historic mines in the Coolgardie field, however it has received little effective exploration in the modern era due to holes being too shallow, or not effectively targeted. The majority of previous drilling in the area was carried out using shallow RAB, which is ineffective in testing reef structures dipping at between 45 and 60 degrees.

Following up on work commenced by Coolgardie Gold in the early 1990's, the Company digitised the main workings, which proved to be vital when planning and orienting drill holes.

The initial holes targeting the upper portions of the Westralia and Callisto reefs did not intersect significant mineralisation, however two significant intersections were drilled on the Bonnie Vale and Vale of Coolgardie structures, namely 6.0m @ 9.45g/t from 158m BONC035 and 6.0m @ 7.12g/t from 95m in BONC033 (see Table A below).

A second round of RC drilling at Bonnie Vale will commence in the coming quarter, following up on these early results.

Brilliant

At Brilliant 14 holes were drilled for 4,264.5m. This program was designed to provide additional structural and assay data on deep targets building on the success of the Brilliant Deeps program completed in H2 2013, with all holes drilled beneath the current Brilliant pit (Figure 2). One hole at the northern end of the program could not be completed due to a lost rod string; this is expected to be recovered in the next round of drilling.

Results from the Brilliant program were sufficient to justify further drilling at depth. The higher-grade zones are particularly significant as FML's intention is to define sufficient tonnage at a robust grade to justify future underground mining (see Table A below).

During the second half of 2014 the Company intends to concentrate on exploring to the north of Brilliant, with an RC program currently awaiting DMP approval. This work is part of the longer-term view to thoroughly define mineralisation along the 2.5km-long Brilliant trend. Moving into 2015 the Company will continue infill drilling on the Brilliant Deeps area, which is now an advanced brownfields project.

Boundary

At the Boundary pit three RC holes were drilled for 774m, bracketing the known mineralisation at depth to test whether the deposit had sufficient strike and dip extent to justify further work. This drilling was unsuccessful in defining significant gold values, and no further work is planned.

^{*}Collar locations for Coolgardie targets are presented in Figures 7 to 9.

Figure 1: Coolgardie Project tenements & priority target areas

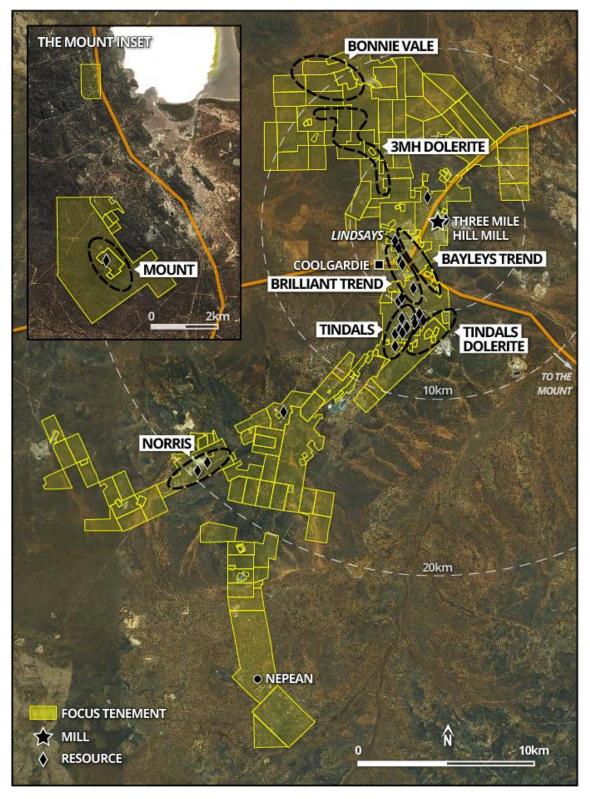


Figure 2: Representative cross section of the Brilliant Deeps area.

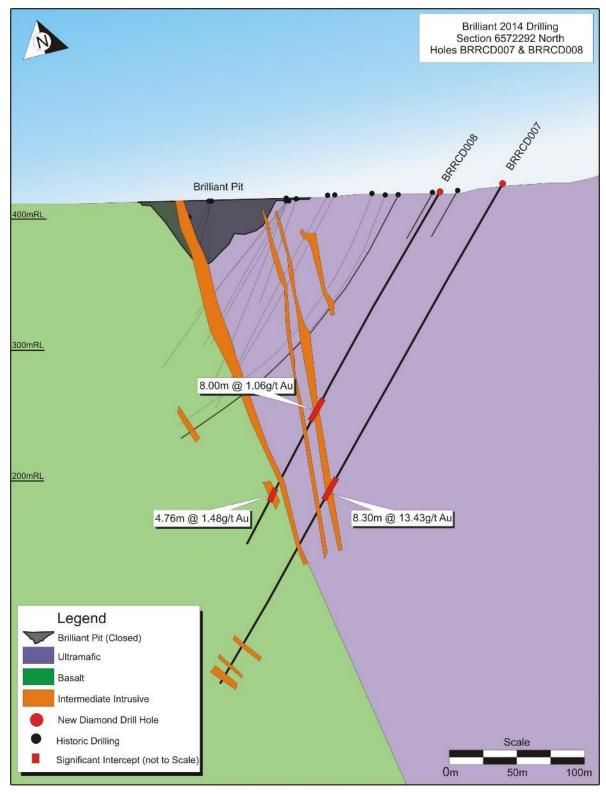
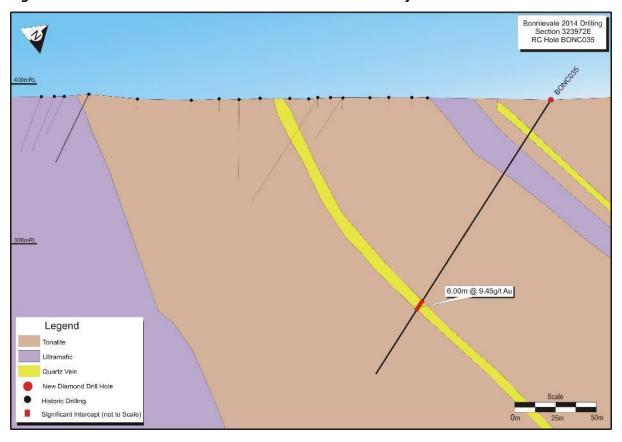



Figure 3: Bonnie Vale hole BONC035 on the Bonnie Vale Reef.

Laverton Gold Project*

Fish

11 holes were drilled at Fish, including 1,942m of RC drilling and 1,435.1m of diamond tails. Fish was originally drilled by WMC and mined as an open pit operation by Crescent Gold, with gold mineralisation hosted within a steeply-dipping BIF unit. The geological interpretation had shallow-dipping granitic intrusions cutting off the orebody at depth, which resulted in a common view that the prospect had little depth potential despite the relatively high grades mined in the pit.

A reinterpretation of Fish conducted by FML geologists in late 2013, in conjunction with re-logging of old drill core, led to a complete re-appraisal of its prospectivity. The Company now believes the BIF unit to be relatively continuous, although folded, at depth rather than being faulted off and displaced by the granites. The recent drilling program was intended to test this hypothesis.

Results appear to support the new interpretation, although there is more complexity to the BIF units than expected. The new data will be added to a revised mineralisation interpretation before any further drilling is proposed (see Table A below).

Lord Byron

Two RC holes were drilled at Lord Byron, principally to keep the tenement in good standing but also testing mineralisation on flat structures adjacent to the existing open pit. The holes intersected a number of mineralised zones, and the new data will now be modelled in Leapfrog to assess its significance in relation to the rest of the data set (see Table A below).

Lancefield

Twelve RC holes were drilled for 1,338m testing a number of shallow positions along the strike of the West Lode. All holes intersected the lode position, with mixed results in terms of gold values. The best result was 2m @ 59.76g/t from 50m in LFRC002 (see Table A below).

West Lode was targeted because it remains relatively under-explored, and anecdotal evidence from previous explorers indicates the West Lode contains non-refractory mineralisation whereas the Main Lode contains a significant refractory component.

Craiggiemore

13 holes were drilled at Craiggiemore, including 1,926m of RC drilling and 940.4m of diamond core. This program was designed to test extensions to BIF-hosted mineralisation beneath the West Lode, which was successfully mined in the Craiggiemore pit (see Table A below).

The drilling indicates an unknown structural feature terminates mineralisation on the West Lode, however there is currently insufficient data to interpret or model this structure accurately. The drilling returned a best result of 4.7m @ 9.28g/t Au from 212m in hole CMDD348, however this mineralisation represents the Craiggiemore East Lode.

Prendergast Well

Drilling at Prendergast Well was designed to test mineralisation previously identified in shallow RAB holes. Four RC holes were drilled for 640m. The best result was 2m @ 4.68g/t from 46m in hole PWRC004, and no further work is planned at this stage.

Gladiator

Two RC holes were drilled for 300m. No significant intersections were received. No further work is planned at this stage.

^{*}Collar locations for Laverton targets are presented in Figures 10 to 15.

Figure 4: Laverton Project tenements & priority target areas.

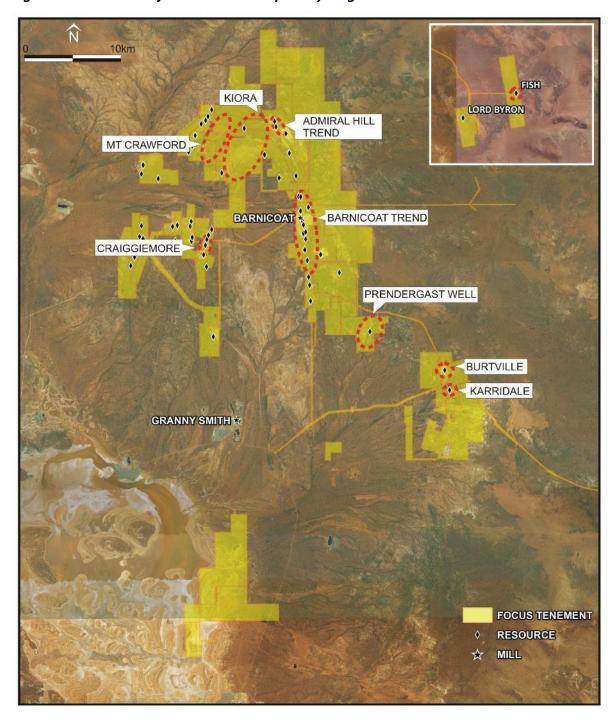


Figure 5: Cross section of Fish deposit showing the reinterpreted BIF lodes in blue.

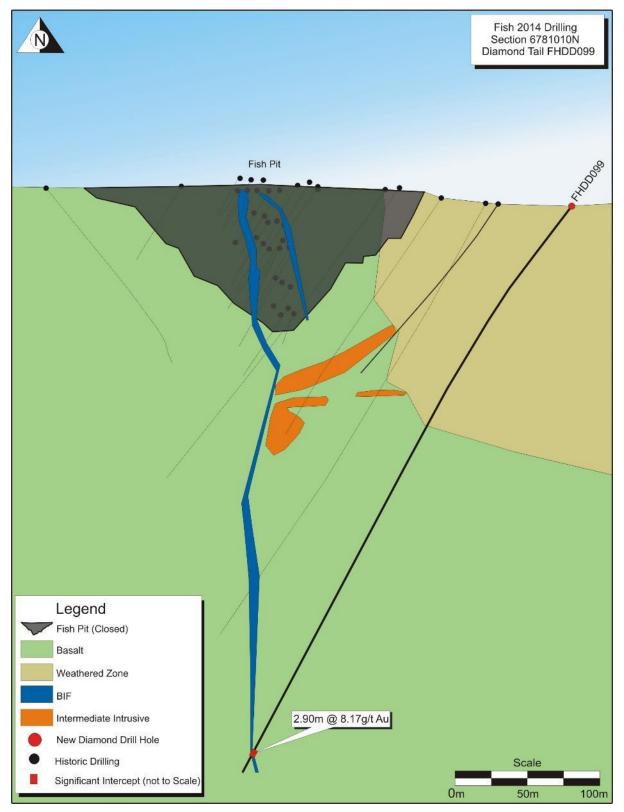
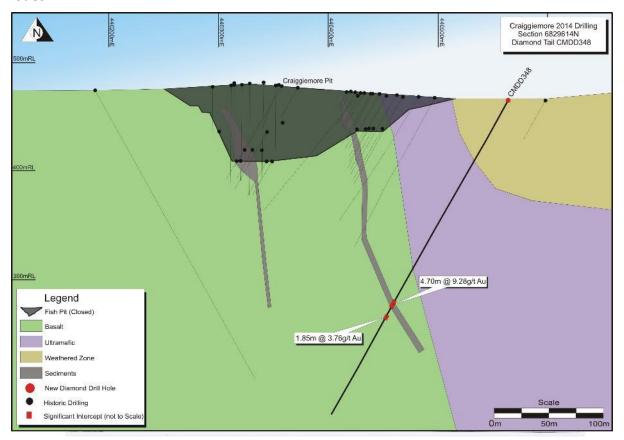



Figure 6: Craiggiemore cross section showing the relative positions of the East and West BIF lodes.

Table A: Significant Intersections

Intersections are length-weighted averages. Intersections reported are a minimum of 1m @ 1g/t. Minimum sample interval for inclusion is 0.1m.

Hole ID	Easting	Northing	RL	Depth	Dip	Azim	nuth	From	То	Intersection
	(MG	A 94 Zone	51)	(m)		(MGA	(94)	(m)	(m)	(ppm Au)
			COOL	GARDIE	GOLD F	PROJEC	СТ			
BONNIE VAL	.E									
BONC031	324216	6584320	397	254	-60	221		136	137	1m @ 10.50ppm
							And	138	139	1m @ 1.52ppm
							And	165	166	1m @ 1.78ppm
							And	209	210	1m @ 2.68ppm
							And	250	251	1m @ 34.00ppm
BONC032	324286	6584188	400	237	-60	221		102	106	4m @ 1.19ppm
							And	115	116	1m @ 1.10ppm
							And	125	127	2m @ 1.22ppm
							And	132	134	2m @ 2.98ppm
BONC033	324350	6584107	400	186	-60	221		20	21	1m @ 1.08ppm
							And	39	43	4m @ 1.47ppm
							And	54	55	1m @ 6.22ppm
							And	95	101	6m @ 7.12ppm
BONC034	324090	6584269	393	276	-60	221		99	101	2m @ 1.54ppm
							And	178	179	1m @ 6.19ppm
BONC035	324041	6584357	390	209	-60	221		158	164	6m @ 9.45ppm
BONC042	323581	6584175	390	156	-60	270		86	87	1m @ 1.08ppm
BONCD036	323950	6584407	390	378.2	-65	221		165	166	1m @ 1.62ppm
							And	221	222	1m @ 1.34ppm
BRILLIANT										
BRRC009	326644	6572025	424	243	-60	270		188	189	1m @ 1.32ppm
							And	194	195	1m @ 1.86ppm
BRRC012	326591	6571925	422	221	-60	270		132	133	1m @ 2.34ppm
							And	136	138	2m @ 2.12ppm
							And	181	182	1m @ 1.46ppm
							And	212	213	1m @ 7.32ppm
BRRCD001	326468	6572836	406	341	-60	250		19	20	1m @ 1.17ppm
							And	41	42	1m @ 6.10ppm
							And	279.59	282.44	2.85m @ 3.99ppm
BRRCD002	326568	6572501	416	357.2	-60	250		129	130	1m @ 1.85ppm
							And	138	140	2m @ 5.80ppm
							And	238	242	4m @ 1.34ppm
BRRCD003	326508	6572586	412	292.4	-60	250		24	26	2m @ 3.12ppm
							And	28	29	1m @ 1.10ppm
							And	97	99	2m @ 1.93ppm
							And	101	102	1m @ 1.70ppm
							And	107	108	1m @ 1.84ppm
							And	113	114	1m @ 2.36ppm
							And	116	117	1m @ 1.28ppm

							And	118	119	1m @ 2 50nnm
		1					And	_		1m @ 2.59ppm
							And	203	204	1m @ 3.66ppm
							And	209	211	2m @ 2.22ppm
							And	218	219	1m @ 1.22ppm
BRRCD004	326608	6572514	418	401.3	-60	250		72	73	1m @ 8.02ppm
							And	166	167	1m @ 1.55ppm
							And	174	178	4m @ 1.50ppm
							And	187	191	4m @ 1.49ppm
							And	311.43	312.58	1.15m @ 3.43ppm
							And	317	318	1m @ 1.52ppm
							And	328	329.27	1.27m @ 1.05ppm
							And	395.34	396.34	1m @ 1.21ppm
BRRCD005	326478	6572679	411	333.3	-60	250		120	125	5m @ 3.89ppm
							And	126	127	1m @ 1.14ppm
							And	137	138	1m @ 3.32ppm
							And	156	157	1m @ 1.07ppm
							And	159	160	1m @ 1.25ppm
							And	161	162	1m @ 1.12ppm
							And	190	193	3m @ 2.33ppm
							And	229	230	1m @ 1.32ppm
							And	234	237	3m @ 6.61ppm
							And	238	239	1m @ 1.12ppm
							And	276.7	278	1.3m @ 3.30ppm
BRRCD006	326548	6572722	411	377.1	-60	250		301.65	303.92	2.27m @ 4.72ppm
							And	361.15	363.54	2.39m @ 25.55ppm
BRRCD007	326687	6572338	427	444.2	-60	250		262.78	263.78	1m @ 3.62ppm
							And	268.24	276.54	8.3m @ 13.46ppm
							And	406.24	407.24	1m @ 1.24ppm
BRRCD008	326644	6572315	422	309.2	-60	250		191	194	3m @ 4.17ppm
							And	267.6	268.6	1m @ 6.91ppm
BRRCD011	326553	6572601	415	361.1	-60	250		110	111	1m @ 2.59ppm
							And	166	167	1m @ 2.29ppm
							And	282.01	283.8	1.79m @ 1.21ppm
BRRCD013	326659	6572425	425	423.3	-60	250		224	225	1m @ 1.13ppm
							And	226	227	1m @ 1.21ppm
							And	252.82	253.83	1.01m @ 4.23ppm
				1			And	311	312	1m @ 2.00ppm

als Ltd.			IAVE	ERTON G	OI D PE	OJFC	Т			
FISH			<u> </u>		OLD I I	COULO				
FHDD099	511583.5	6781010	460.713	468.9	-55	270		455	457.9	2.9m @ 8.17ppm
Lord Byron		0701010	400.713	400.9	-55	210		400	437.9	2.9111 @ 0.17ppi11
LBRC196	504290.4	6777325	440.2	108	-90	360		39	41	2m @ 6.53ppm
LBRC197	504362	6777325	439.2	186	-90	360		37	38	1m @ 2.08ppm
							And	50	51	1m @ 1.45ppm
							And	65	66	1m @ 4.43ppm
							And	68	73	5m @ 1.95ppm
							And	78	82	4m @ 2.57ppm
							And	84	87	3m @ 3.24ppm
							And	88	91	3m @ 2.27ppm
							And	111	112	1m @ 3.70ppm
							And	155	156	1m @ 1.98ppm
							And	157	161	4m @ 1.60ppm
							And	162	163	1m @ 1.33ppm
							And	166	168	2m @ 1.17ppm
							And	179	183	4m @ 5.13ppm
							And	184	186	2m @ 2.24ppm
LANCEFIEL	D			l	ı					
LFRC001	439149.4	6840999	450.9	150	-60	090		33	34	1m @ 1.45ppm
							And	64	65	1m @ 1.24ppm
							And	111	112	1m @ 6.37ppm
							And	117	118	1m @ 1.71ppm
LFRC002	439145	6840999	450.8	120	-90	000		37	38	1m @ 2.08ppm
							And	42	44	2m @ 1.44ppm
							And	50	52	2m @ 59.76ppm
							And	68	69	1m @ 2.42ppm
LFRC004	439156.3	6841049	450.7	90	-90	000		39	40	1m @ 1.40ppm
LFRC005	439181.8	6841098	450.5	160	-60	090		32	33	1m @ 1.17ppm
							And	82	84	2m @ 1.48ppm
LFRC006	439177	6841097	450.5	100	-90	000		38	39	1m @ 2.55ppm
							And	41	42	1m @ 1.41ppm
LFRC007	439181.2	6841109	450.9	130	-60	000		27	28	1m @ 3.57ppm
							And	45	46	1m @ 1.27ppm
LFRC008	439129.4	6841099	450.0	60	-90	000		18	19	1m @ 2.36ppm
CRAGGIEMO	1			l	1 .	T _				T . = -
CMDD348	440563.2	6829614	464.53	221.6	-60	286		212	216.7	4.7m @ 9.28ppm
						And		226	227.85	1.85m @ 3.76ppm
CMRC339	440668.5	6828555	467.06	198	-60	270		91	92	1m @ 1.54ppm
						And		110	111	1m @ 1.32ppm
						And		123	124	1m @ 1.3ppm
CMRC341	440487.9	6829405	464.19	250	-60	286		163	164	1m @ 2.27ppm
CMRC342	440501.5	6829451	464.95	250	-60	286		180	182	2m @ 4.08ppm
						And		183	185	2m @ 1.96ppm

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Laverton Gold Project Coolgardie Gold Project									
Sampling			•		-	•				
techniques	This report relates to results for Reverse Circulation (RC) and diamond core drilling of Focus Minerals Coolgardie and Laverton Project areas.									
	The summary table below lists metres drilled by drill type. The diamond tails are a sub-set of the RC holes.									
		on drill chips re collected o		ed through a	cyclone and	cone splitter.				
	4m composi bags.	te samples we	ere collected i	manually usin	g spear samp	oling of green				
		ore sample w		nes of minera between a i						
	Lave	erton Gold Pro	ject	Cool	gardie Gold Pi	roject				
	Drill Type	Holes	Metres	Drill Type	Holes	Metres				
	RC	43	6,440.0	RC	30	6,698.0				
	DD Tails	17	2,375.5	DD tails	11	1,214.5				
	Total	43	8,815.5	Total	30	7,912.5				
		RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg.								
	The splitter was levelled at the beginning of each hole using a bullseye level.									
	Any RC composite samples returning an assay value of 0.2g/t Au or greater were then re-assayed in 1m intervals by submitting the 1m cone-split samples for fire assay by 40g charge.									
	At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverized to 90% passing 75µm.									
	The samples were then prepared for fire assay.									
	When visible gold was observed in RC chips, this sample was then flagged by the supervising geologist for the benefit of the laboratory.									
	The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration.									
	The core was cut in half using an Almonte automatic core saw, with half-core samples submitted to Kalgoorlie assay laboratories for fire assay analysis by a 40g or a 50g (Diamond half core only) charge AAS finish.									
Drilling techniques	All drilling w size diamon		using either	an RC face s	ampling ham	mer or NQ2-				
	All drill core	was oriented	by the drilling	contractor us	ing an Ezy-ma	ark system.				
	gyroscope. [nd holes at Br	etion of drillii illiant were su e.						
	RC sample process.	recovery was	s recorded by	y a visual es	timate during	the logging				

Criteria	Laverton Gold Project Coolgardie Gold Project
Drill sample recovery	The core samples were oriented, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database.
	All RC samples were drilled dry whenever possible to maximize recovery, with water injection on the outside return to minimise dust.
	Study of sample recovery versus gold grade does not indicate a bias in the gold grade caused by any drop in sample recovery.
Logging	All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
	All diamond core was logged for structure, and geologically logged using the same system as that for RC.
	The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete.
	Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present.
	Diamond core was photographed wet and dry one core tray at a time using a standardised photography jig.
	Samples from RC holes were archived in standard 20m plastic chip trays.
	The entire length of all holes (RC or diamond) are logged.
Sub-sampling techniques	Core samples were taken from half core, cut using an Almonte automatic core saw.
and sample preparation	The remainder of the core was retained in core trays tagged with a hole number and metre mark.
	RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.
	Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths below the water table.
	Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database.
	The samples were collected in a pre-numbered calico bag bearing a unique sample ID.
	Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight.
	Gold analysis was determined by a 40g charge fire assay with an AAS Finish or a 50g charge AAS Finish (diamond core only). The difference in fire assay charge size was simply due to the use of two different commercial laboratories during the drilling campaign.
	The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation.
	Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
	FML inserts 2 standards and takes 4 duplicates for every 100 samples.

Criteria	Laverton Gold Project Coolgardie Gold Project						
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard.						
	Diamond core duplicates were not taken during this drilling program.						
	Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.						
	The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.						
Quality of assay data and	The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.						
laboratory	No geophysical tools, spectrometers or handheld XRF instruments were used.						
tests	The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision.						
	All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.						
Verification of sampling and assaying	Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.						
	Normally if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however no twinned holes were drilled during this program.						
	Primary data is sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imports the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory.						
	Once loaded, data was extracted for verification by the geologist in charge of the project.						
	No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.						
Location of	Drill collars were surveyed after completion, using a DGPS instrument.						
data points	Down-hole surveys were completed using a north-seeking gyroscope operated by a qualified contractor.						
	All coordinates and bearings use the MGA94 Zone 51 grid system.						
	Focus utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments.						
Data spacing and	Drill spacing across the Laverton and Coolgardie prospects varied depending on the exploration stage that the drill target currently existed.						
distribution	Drilling varied from wide spaced exploration RC drilling to precisely placed diamond tails designed to test mineralisation at depth and along strike.						
	The data spacing of the drilling across Focus's prospects during this campaign was not considered sufficient to be used in a Mineral Resource; the majority of drilling was completed to establish continuity of mineralisation and alteration at depth.						

Criteria	Laverton Gold Project Coolgardie Gold Project									
	Intercepted mineralisation will be digitize or to create new models as required.	ed and incorporated into existing models								
		Additional infill drilling would be required before this mineralisation can be used in the estimation of a Mineral Resource or Ore Reserve.								
	Sample compositing has not been applied	ed to the reporting of exploration results.								
Orientation of data in	Drilling was designed based on known g historical data and cross-sectional inter	eological models, field mapping, verified pretation.								
relation to geological	capabilities and the dip of the orebody.	Drill holes oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the orebody.								
structure	. 5	en recognised in the drilling data to date.								
Sample	Laverton Gold Project	Coolgardie Gold Project								
security	All samples are bagged in a tied numbered calico bag, grouped into larger polyweave bags and cable tied. Polyweave bags are placed into larger Bulka Bags with a sample submission sheet and tied shut. Consignment note and delivery address details are written on the side of the bag and picked up by Coastal Midwest and delivered directly to the Kalgoorlie laboratory.	All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a daily basis.								
Audits or reviews	A review of sampling techniques was carried out by Roredata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence.									

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Laverton Gold Project	Coolgardie Gold Project					
Mineral tenement and land	All drilling was conducted on tenements	100% owned by Focus Minerals Limited perations Pty Ltd and Focus Minerals					
tenure status	There are currently (July 2014) no re Laverton or Coolgardie project areas.	egistered Native Title claims over the					
		cludes the Lancefield tenement M38/37. e Company's annual report published on p84 of that report.					
Exploration done by	As both Coolgardie and Laverton are had been explored by a number of companion	nistoric mining areas, the projects have es in the past, in particular:					
other parties	The Fish and Lancefield projects we Lancefield) by Western Mining Corporate	re drilled (and mined, in the case of tion;					
	Additional drilling was completed at Lar being acquired by Crescent Gold;	ncefield by Metex Ltd prior to the project					
	Fish open pit was mined by Crescent G	old and Focus Minerals;					
	Craiggiemore was an historic underground mine, with an open pit mined by Ashton Gold and subsequently Crescent Gold;						
	The Brilliant pit was initially mined by the Brilliant-Tindals Joint Venture. It was subsequently expanded after further drilling by Herald Resources' subsidiary Goldfan. More recent drilling was completed by Focus Minerals;						
	Bonnie Vale is the site of a number of historic workings including the "Varischetti Mine" (Westralia). Modern exploration has been conducted by Coolgardie Gold NL, Gold Mines of Coolgardie and Focus Minerals.						
Geology	The company is exploring for Archaean	lode-style gold deposit at both projects.					
	Laverton Gold Project	Coolgardie Gold Project					
	Lancefield mineralisation occurs on thrust planes dipping at approximately 45 degrees to the east. Mineralisation tends to be sulphide-rich, with most mining development occurring on the Main Lode which is typically a refractory mineralisation style. There has been less development and less drilling within the West Lode. Anecdotal evidence suggests the West Lode contains zones of free-milling mineralisation. Fish and Craiggiemore are both BIF-hosted orebodies, with gold mineralisation occurring within steep-dipping BIF units. At both areas there is some structural complexity due to late-stage faulting and/or shear-related folding which is currently the subject of	Bonnie Vale mineralisation is historically contained within large (300m strike length) planar reef structures on or near the contact of the Bonnie Vale tonalite and an overlying ultramafic unit. FML drilling is investigating potential extensions to these structures at depth and along strike. Brilliant contains gold mineralisation on sheared basalt-ultramafic contacts and also within silicified intrusive diorite bodies conformable to the stratigraphy, dipping steeply to the WSW. Brilliant is an advanced brown-fields project.					
	investigation by FML geologists.						

Drill hole Information

Laverton Gol	d Project						
HOLEID	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	TENEMENTID
Craiggiemore							
CMDD344	440187.5	6829718	473	303.2	106	-60	M3800270
CMDD346	440181.8	6829850	469	256.3	106	-60	M3800270
CMDD347	440202.7	6829895	468	195.2	106	-60	M3800270
CMDD348	440563.2	6829614	465	330.6	286	-60	M3800270
CMRC339	440668.5	6828555	467	198	270	-60	M3800236
CMRC340	440751.8	6828653	466	114	270	-60	M3800236
CMRC341	440487.9	6829405	464	250	286	-60	M3800270
CMRC342	440501.5	6829451	465	250	286	-60	M3800270
CMRC343	440214.2	6829606	471	100	106	-60	M3800270
CMRC345	440186.4	6829796	474	120	106	-60	M3800270
Fish							
FHDD098	511609.7	6781090	462	459.8	270	-60	M3900139
FHDD099	511583.5	6781010	461	468.9	270	-55	M3900139
FHDD101	511226.1	6781011	461	330.95	90	-50	M3900139
FHDD102	511246	6781049	461	259.5	90	-50	M3900139
FHDD103	511276.7	6781088	462	255.1	90	-48	M3900139
FHDD104	511256.6	6781092	461	370.5	90	-55	M3900139
FHDD105	511330.2	6781132	463	186.5	90	-50	M3900139
FHDD106	511310.3	6781132	462	225.95	90	-58	M3900139
FHDD108	511190.8	6780965	460	360.4	91	-48	M3900139
FHRC100	511437.6	6780889	462	150	270	-48	M3900139
FHRC107	511202.8	6780925	460	200	90	-54	M3900139
Lancefield							
LFRC001	439149.4	6840999	451	150	90	-60	M3800037
LFRC002	439145	6840999	451	120	176	-90	M3800037
LFRC003	439160.9	6841049	451	150	90	-60	M3800037
LFRC004	439156.3	6841049	451	90	196	-90	M3800037
LFRC005	439181.8	6841098	451	160	93	-61	M3800037
LFRC006	439177	6841097	450	100	360	-90	M3800037
LFRC007	439181.2	6841109	451	130	360	-60	M3800037
LFRC008	439129.4	6841099	450	60	148	-90	M3800037
LFRC009	439400.4	6842488	451	126	270	-60	M3800159
LFRC010	439598.2	6842486	452	150	270	-60	M3800159

M3800159

-60

LFRC011

439499.1

6842487

451

102

270

Drill hole
Information
(continued)

HOLEID	EAST	NORTH	RL	DEPTH	AZIMUTH	DIP	TENEMENTID
Bonnie Vale							
BONC030	324472	6584032	403	210	220	-60	M1500877
BONC031	324216	6584320	397	254	220	-60	M1500595
BONC032	324286	6584188	400	237	221	-60	M1500595
BONC033	324350	6584107	400	186	220	-61	M1500595
BONC034	324090	6584269	393	276	221	-60	M1500277
BONC035	324041	6584357	390	209	221	-60	M1500595
BONC037	324299	6584348	400	208	221	-60	M1500595
BONC038	323907	6583950	407	186	270	-60	M1500277
BONC039	323877	6584015	404	167	270	-60	M1500277
BONC040	323781	6584050	393	167	270	-60	M1500277
BONC041	323701	6584083	400	240	270	-60	M1500277
BONC042	323581	6584175	390	156	269	-59	M1500277
BONCD036	323950	6584407	390	384.3	223	-65	M1500595
Brilliant							
BRRC009	326644	6572025	424	243	255	-60	M1500646
BRRC010	326447	6572934	404	228	255	-60	M1500646
BRRC012	326591	6571925	422	221	255	-60	M1500646
BRRCD001	326468	6572836	406	341	255	-61	M1500646
BRRCD002	326568	6572501	416	357.2	254	-60	M1500646
BRRCD003	326508	6572586	412	292.4	255	-60	M1500646
BRRCD004	326608	6572514	418	401.3	252	-60	M1500646
BRRCD005	326478	6572679	411	333.3	255	-60	M1500646
BRRCD006	326548	6572722	411	377.1	257	-64	M1500646
BRRCD007	326687	6572338	427	444.2	253	-60	M1500646
BRRCD008	326644	6572315	422	309.2	255	-60	M1500646
BRRCD011	326553	6572601	415	361.1	254	-60	M1500646
BRRCD013	326659	6572425	425	423.3	253	-58	M1500646
		s are repo		t a 1.00		t-off w	Project ith a minimu
	nship betwe						le, however th t be estimate
	vere drilled a	at an acute	angle				d 106 azimu e access issue
ections are i	ncluded to	depict the a	attitude	and styl	e of minera	alised s	
N. 2012	0 0r0 r000rt	ad in a ha	lancad	reportin	a style The	YPA	announceme

Criteria
Data
aggregation
methods

Relationship between mineralisation widths and intercept lengths

Diagrams

Balanced reporting

Other substantive exploration data	There is no other material exploration data to report at this time.
Further work	The Company is designing drilling programs to follow up on results from Brilliant and Bonnie Vale in the second half of 2014.
	The Fish project requires digital modelling of geology and mineralisation envelopes before further work can be planned.
	Due to exploration priorities, no work is planned at Lancefield or Craiggiemore at this stage.

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Andrew Paterson who is a member of the Australasian Institute of Mining and Metallurgy. Mr Paterson is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Paterson consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears.

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forwardlooking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Figure 7: Plan of Bonnie Vale collar locations.

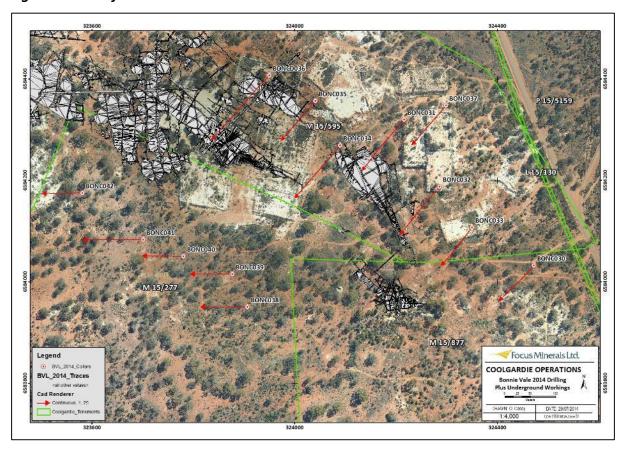


Figure 8: Plan of Brilliant collar locations.

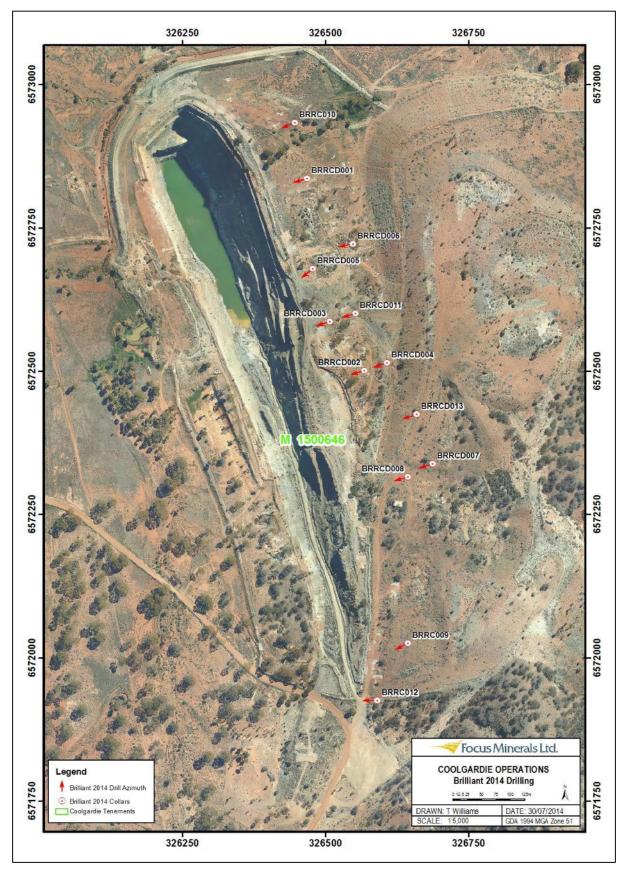


Figure 9: Plan of Boundary collar locations.

Figure 10: Plan of Fish collar locations.

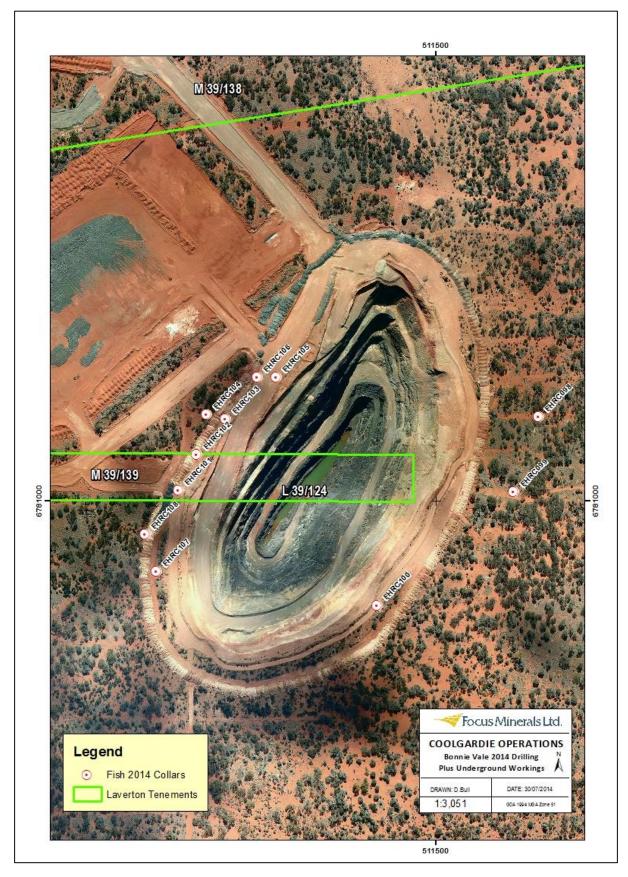


Figure 11: Plan of Lord Byron collar locations.

Figure 12: Plan of Lancefield collar locations.

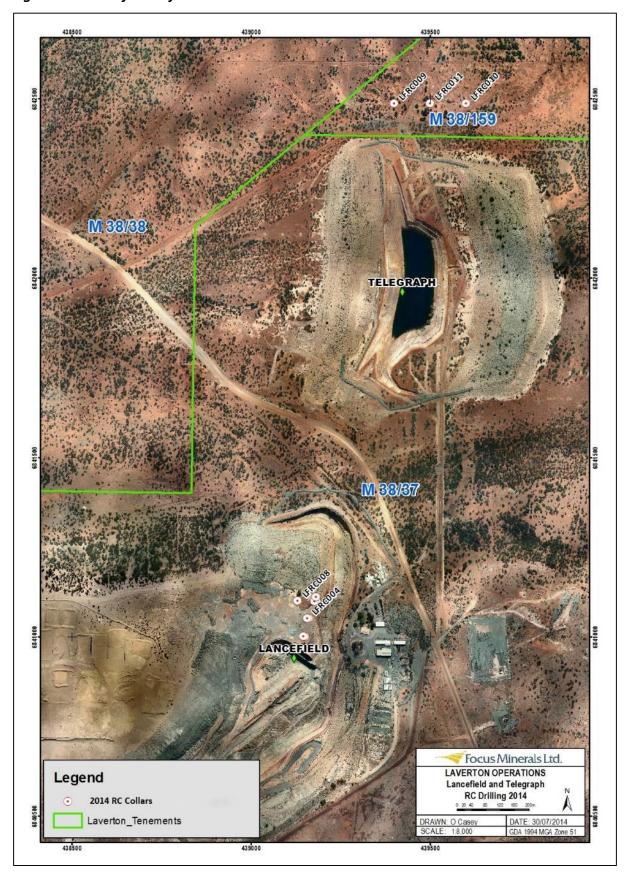


Figure 13: Plan of Craiggiemore collar locations.

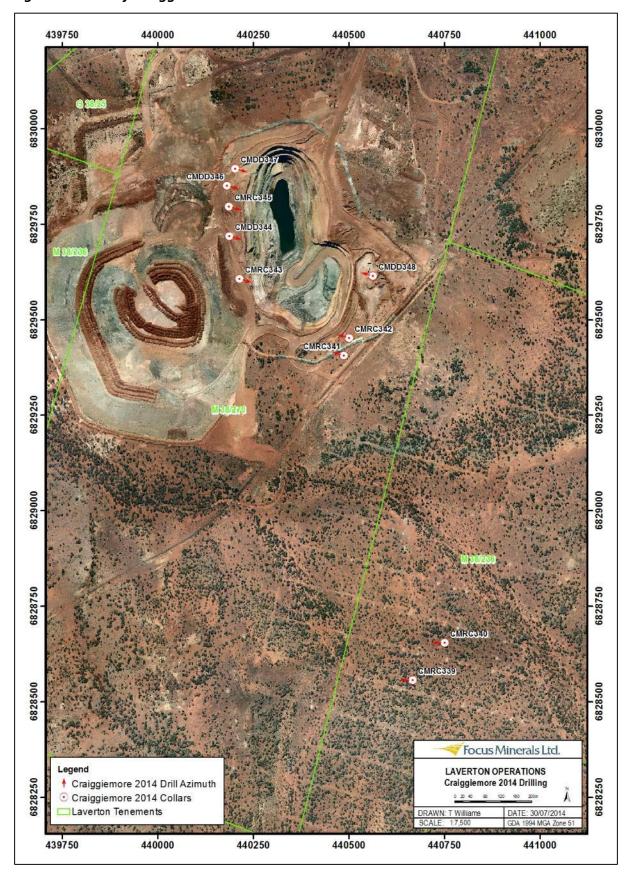


Figure 14: Plan of Prendergast Well collar locations.

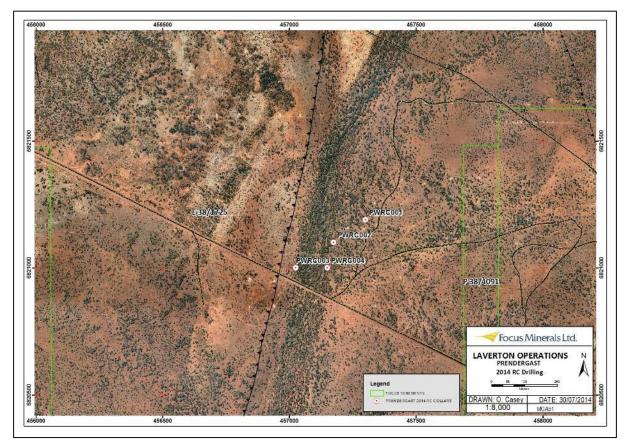
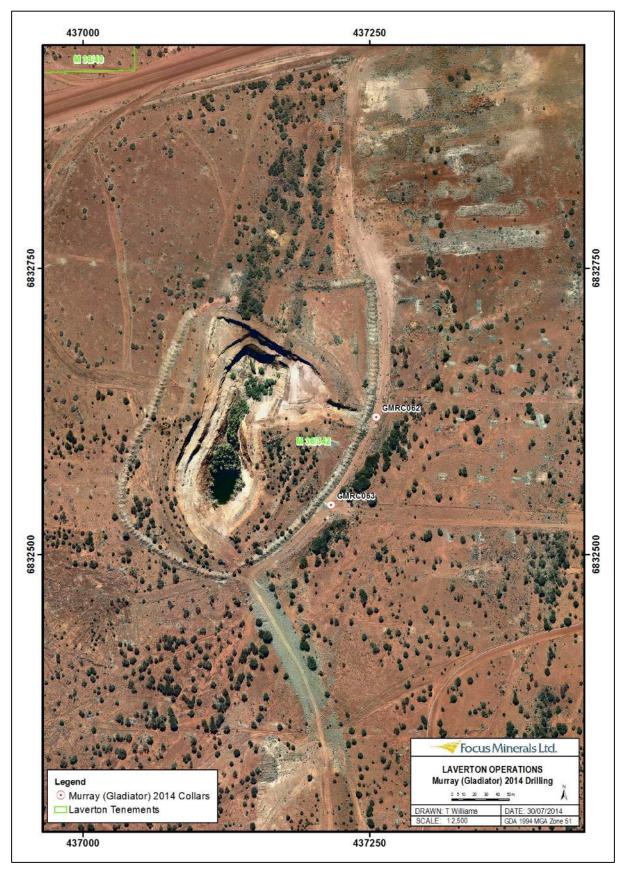



Figure 15: Plan of Gladiator collar locations.

ENDS

Focus Minerals Limited - Focus owns two large gold projects in Western Australia's Eastern Goldfields. The company is the largest landholder in the Coolgardie Gold Belt, where it owns the 1.2Mtpa processing plant at Three Mile Hill. 250km to the northeast Focus has the Laverton Gold Project which comprises a significant portfolio of highly prospective tenure. Focus also owns the 1.45Mtpa Barnicoat mill in Laverton which has been on care and maintenance since 2009.

For further information please contact:

Dane Etheridge

Company Secretary and GM Business Development Focus Minerals Ltd Phone: +61 8 9215 7888

Andrew Paterson

GM Exploration & Resource Development Focus Minerals Ltd Phone: +61 8 9215 7888