
E: info@focusminerals.com.au

ASX ANNOUNCEMENT

27 January 2016

Evidence Grows for Significant Gold System at Karridale

Results have been received from 14 holes drilled to follow-up previous high grade gold intersections (see ASX release dated 13 April 2015) on the Karridale Project, near Laverton in Western Australia. Three holes were reverse circulation (RC) only, with the remaining 11 holes being diamond core (DD) tails on RC pre-collars. The drilling has increased Focus Minerals Ltd's ("Focus" or "the Company") confidence that the Karridale Project is a significant gold system and has extended the area of the project to over 600 x 800m, remaining open along strike and down dip. In total, Focus has drilled some 23 RC holes, 1 DD hole with mud rotary pre-collar and 12 DD holes with RC pre-collars at Karridale. The holes varied in depth from 31m to 551m and averaged about 243m deep.

Following up on the most recent successes, Focus plans to infill the drill collar pattern within about 250m of surface with the goal of generating a maiden Mineral Resource for the Karridale Project.

The company also recently conducted a successful regional program to aid in targeting further gold mineralisation across the broader Burtville area. This work has highlighted 15 significant targets as discussed later on page 5 in this announcement. Highlights from the Karridale drilling program include:

Highlight Intersections from Recent Karridale Drilling*							
1.0m @ 60.50g/t Au from 51.0m and							
3.0m @ 17.33g/t Au from 69.0m and							
6.0m @ 3.75g/t Au from 114.0m in Hole KARC156							
2.0m @ 8.78g/t Au from 145.0m and							
8.1m @ 10.05g/t Au from 183.4m in Hole KARD158							
3.0m @ 25.13g/t Au from 274.0m in Hole KARD163 and							
3.1m @ 11.43g/t Au from 146.9m in Hole KARD165							

^{*}Other significant intersections are presented in Table A below

Karridale Project

The Karridale Project is located across 4 tenements within the Burtville district, 30km from Laverton and some 2km south of the Burtville open cut owned by Focus Minerals (See *Figure 1*). M38/8 and E38/2032 are wholly owned by Focus. M38/73 and M38/89 are held under the Merolia Joint Venture between Focus Minerals (Laverton) Pty Ltd and GSM Mining Company Pty Ltd (a wholly owned subsidiary of Gold Fields Limited). Focus holds a 91% interest in these tenements.

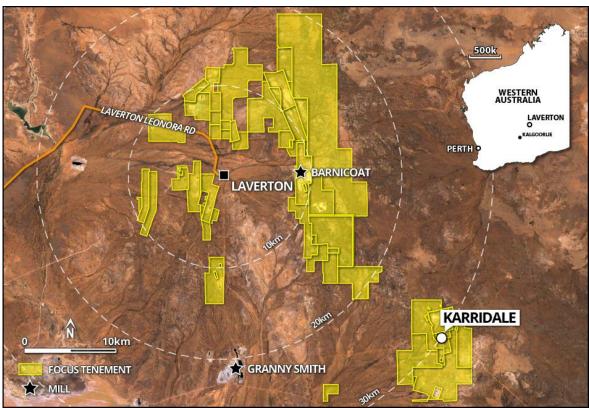


Figure 1: Focus Minerals Karridale Location Plan.

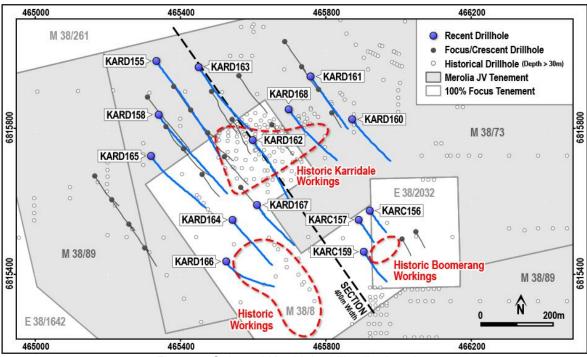


Figure 2: Selected Karridale drill collar locations

Previous drilling by Focus (see ASX release 13 April 2015) suggested gold mineralisation at the Karridale Project is primarily associated with multiple, stacked, broad shear zones, flatly dipping to the northwest. In June 2015, a regional airborne electromagnetic survey (VTEM) over Focus' Burtville ground package produced 3 conductor anomalies over the Karridale Project. Subsequent conductive plate modelling gave equivocal results. However one modelling solution supported the interpreted flat northwest dip. Importantly it suggested that the deep intersection in hole KARD154 (See ASX release 13 April 2015) may be the down dip extension of the Boomerang Mine, some

600m to the southeast. To test this and other interpretations, a 14 hole RC/DD programme was drilled. Collar locations are displayed in Figure 2 above. A complete list of the significant intercepts from this work is presented in Table A.

Focus is pleased to report that the results support the concept of a significant gold system, some 400m thick, comprising stacked gold mineralised shear structures and dipping at about 30 degrees to the northwest. Two of the interpreted mineralised zones appear to correspond to the historic Karridale and Boomerang underground mines. Drilling has traced the system over 600m strike, with mineralisation open along strike and down dip. Figure 3 is a diagrammatic composite cross-section (thickness of section is approximately 400m) that shows the interpreted mineralised trends (cross-section location shown in Figure 2). A single down hole electromagnetic (DHEM) survey on hole KARD158 gave 1 in-hole and 3 off-hole responses. The in-hole response coincided with a logged black shale unit. The off-hole conductors coincide with known gold mineralisation zones, but with no black shale units logged in nearby holes. All responses when modelled showed the same flat northwest dip as seen in the interpreted mineralisation trends.

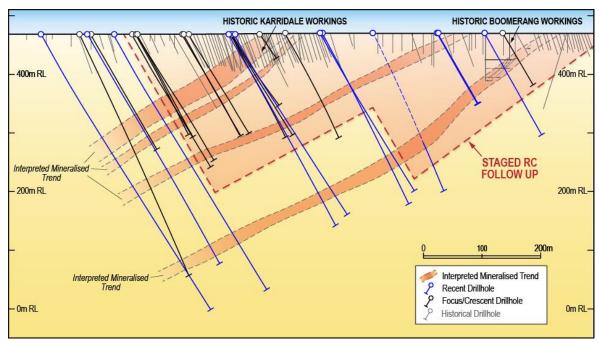


Figure 3: Diagrammatic composite drill cross-section

Gold grades are variable and the mineralised structures pinch and swell down dip. This makes detailed interpretation difficult at the current broad drill collar spacing. With the exception of 6 holes, drill collar spacing is at 80m x 80m at best (Figure 2). Follow-up drilling planned by Focus will concentrate on RC infill of up-dip extensions over better mineralised areas (labelled "STAGE 1 RC FOLLOW UP" in Figure 3). Poor or absent survey control on much of the historic drilling (shown in faded grey in Figure 3) rules out the use of such in resource work. Deeper DD drilling will be planned once the results from the RC have been received and mineralisation plunges confirmed.

Multi-element geochemistry on the sample pulps of recent drilling will allow a more rigorous 3D geological model to be built. This in turn will improve the understanding of geological controls on gold mineralisation and guide future extensional drilling. Some laboratory multi-element results are still outstanding, and this work will be continued during the first quarter of 2016. Lithologies hosting mineralisation include intermediate volcanics, mafic volcanics and shale units. Mineralisation styles encountered include shearing, veining and hydraulic brecciation. Arsenopyrite has been logged in some gold bearing intersections accompanied by an arsenic and

antimony geochemical halo. In initial results, gold grades over 1 g/t Au show a strong correlation with Ag, Cd, Pb and Zn (although these elements are at low ppm levels).

Regional Burtville Drilling

The Karridale Project is centred within Focus' Burtville tenement package (see Figure 1). The depth of transported regolith cover across the Burtville tenure is variable, but the cover is near ubiquitous. This cover means surface geochemical targeting is unlikely to be successful. To assist in identifying sites of potential gold mineralisation, a greater understanding of the stratigraphy and structure of the district is required. To this end, Focus commissioned a helicopter VTEM survey to supplement other datasets. A new geological interpretation across the Burtville tenure was tested by a 129 hole aircore (AC) and RC programme. Specifically these holes were designed to:

- Strengthen the recent geological interpretation of the Burtville district by confirming the stratigraphic sequence.
- Test for the presence of prospective northeast trending thrust structures under regolith cover
- Confirm the presence of north-south trending high grade veins as interpreted in the Karridale and Burtville geological models.
- Test for mineralisation associated with intruded granodiorites such as the Burtville granodiorite, Black Swan granodiorite and a third possible granodiorite 2km SSW of Burtville.

It was found that the best method to compare the degree of gold anomalism in drill holes was to sum all gram x metre intervals to give a total gold-in-hole. This method gave reasonably smooth variations in gold "anomalism" along traverses. The regional program was a success, with 15 significant targets identified for future follow-up, as briefly described in Table 1 below, and identified in Figure 4.

Target	Description
T1	Modest anomalism associated with intrusives and nearby NE striking conductor. Adjacent to Black Swan granitoid.
T2	Broad modest anomalism at north end of Black Swan granitoid.
T3	Weak anomalism associated with western contact of Black Swan granitoid.
T4	Broad modest anomalism associated with NE trending conductor. South end of Black Swan granitoid.
T5	Broad modest anomalism west of Carib mine area. Near large N-S fault zone (see T7 and T15).
T6	Broad modest anomalism associated with Carib mine area.
T7	Broad modest anomalism near large N-S fault zone (see T5 and T15).
T8	Significant anomalism associated with SE edge of poorly defined granitoid.
T9	Strong anomalism associated with Boomerang mineralisation. Follow-up as part of Karridale RCDD work.
T10	Significant anomalism that possibly ties into Karridale mineralisation. Follow-up as part of Karridale RCDD work.
T11	Strong anomalism that possibly ties into Karridale mineralisation. Follow-up as part of Karridale RCDD work.
T12	Strong anomalism in the hanging wall position of the Karridale mineralisation. Follow-up with AC / RC.
T13	Broad modest anomalism on the SE edge of the Burtville granitoid.
T14	Broad weak anomalism associated with NNW trending mineralised zone / conductor (prior drilling has erratic high grade). Note; NE trending vein or structure (line of workings) to SE may be a fault (thrust?).
T15	Broad weak anomalism associated with large N-S fault zone (see T5 and T7).

Table 1: Recommended targets for follow-up from regional drilling.

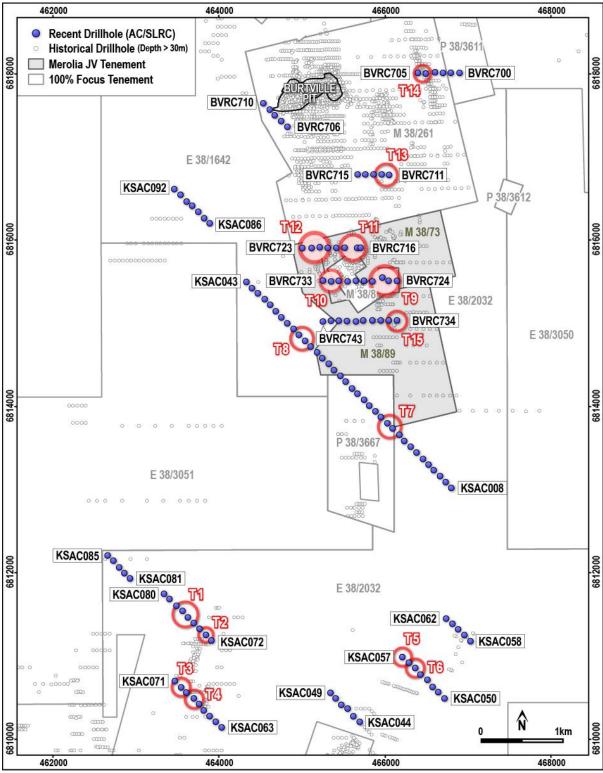


Figure 4: Regional collar map with 15 follow-up targets circled in red

Significant intercepts over 0.5 g/t Au are presented in Table A.

Focus looks forward to updating the market on the results of our upcoming RC infill program.

For further information please contact:

Dane Etheridge

Company Secretary and GM Business Development Focus Minerals Ltd

Phone: +61 8 9215 7888

Michael Guo

GM Exploration & Geology Focus Minerals Ltd Phone: +61 8 9215 7888

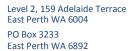
Focus Minerals Limited - Focus owns two large gold projects in Western Australia's Eastern Goldfields. The company is the largest landholder in the Coolgardie Gold Belt, where it owns the 1.2Mtpa processing plant at Three Mile Hill. 250km to the northeast Focus has the Laverton Gold Project which comprises a significant portfolio of highly prospective tenure. Focus also owns the 1.45Mtpa Barnicoat mill in Laverton which has been on care and maintenance since 2009.

Forward Looking Statements

This release contains certain "forward looking statements". Forward-looking statements can be identified by the use of 'forward-looking' terminology, including, without limitation, the terms 'believes', 'estimates', 'anticipates', 'expects', 'predicts', 'intends', 'plans', 'propose', 'goals', 'targets', 'aims', 'outlook', 'guidance', 'forecasts', 'may', 'will', 'would', 'could' or 'should' or, in each case, their negative or other variations or comparable terminology. These forward-looking statements include all matters that are not historical facts. By their nature, forward-looking statements involve known and unknown risks, uncertainties and other factors because they relate to events and depend on circumstances that may or may not occur in the future, assumptions which may or may not prove correct, and may be beyond Focus' ability to control or predict which may cause the actual results or performance of Focus to be materially different from the results or performance expressed or implied by such forward-looking statements. Forward-looking statements are based on assumptions and contingencies and are not guarantees or predictions of future performance. No representation is made that any of these statements or forecasts will come to pass or that any forecast result will be achieved. Similarly, no representation is given that the assumptions upon which forward-looking statements may be based are reasonable. Forward-looking statements speak only as at the date of this document and Focus disclaims any obligations or undertakings to release any update of, or revisions to, any forward-looking statements in this document.

Table A: Significant Intersections *Intersections are length-weighted averages.*

KARC156 KARC156 KARC156 KARC156 KARC157 KARC157 KARC157 KARC159 KAR	Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То	Intersection
Care		(MGA	94 Zone 5	1)	(m)		MGA94	(m)	(m)	(Au)
KARC156 KARC156 KARC156 KARC156 KARC156 KARC157 KARC157 KARC157 KARC158 KARC158 KARC158 KARC158 KARC158 KARC159 KARC160 KARC159 KARC159 KARC159 KARC159 KARC159 KARC159 KARC160 KARC159 KARC160 KARC159 KAR			K							
KARC156 KARC156 KARC156 KARC157 KARC157 KARC159 KARC150 KAR		465922.1	6815573						17	2m @ 3.43ppm
KARC156 And A										- ''
KARC156 And A										
March Marc	KARC156						_			
KARC157 A65890 6815549 469.53 138 -60.76 145 27 31 4m @ 3.23ppm							_			1m @ 4.15ppm
KARC157 A65890 6815549 469.53 138 -60.76 145 27 31 4m@3.23ppm 34 1m@3.45ppm 345ppm 3							and	114	120	6m @ 3.75ppm
KARC157 KARC159		465890	6815549	469.53	138	-60.76				
KARC159 465904.6 6815460 469.5 198 -60.69 145 0 1 1m@ 4.05ppm KARC159 465333.6 6815984 467.26 550.57 -61.07 145 303 305 2m@ 4.75ppm KARD155 465333.6 6815984 467.26 550.57 -61.07 145 303 305 2m@ 4.75ppm KARD155 465338.8 6815987 466.8 507.26 -60.58 145 69 71 2m@ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@ 6.78ppm 46838.9 466.8 466.8 466	KARC157									
KARC159 465904.6 6815460 469.5 198 -60.69 145 0 1 1m @ 4.05ppm KARD155 465333.6 6815984 467.26 550.57 -61.07 145 303 305 2m @ 4.75ppm KARD155 465333.6 6815984 467.26 550.57 -61.07 145 303 305 2m @ 4.75ppm KARD155 465333.8 6815837 466.8 507.26 -60.58 145 69 71 2m @ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m @ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m @ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m @ 8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m @ 8.78ppm 465372.1 361.0 3m d										- ' '
KARC159 465333.6 6815984 467.26 550.57 -61.07 145 303 305 2m @ 4.75ppm	VADC150	465904.6	6815460	469.5	198	-60.69				
KARD155 A65333.6 6815984 467.26 550.57 -61.07 145 303 305 2m @ 4.75ppm	KARC159									
KARD155 And A		465333.6	6815984	467.26	550.57	-61.07				- ' '
KARD155 And August Augu										
March Marc	KARD155									<u> </u>
KARD158 465872.1 6815826 468.8 507.26 -60.58 145 69 71 2m@8.78ppm KARD161 4658338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@8.78ppm 465338.8 6815837 466.8 507.26 -60.58 145 69 71 2m@8.78ppm 465757.8 6815826 471.22 294.9 -60.3 145 122 123.4 0.52m@2.10pp 465757.8 6815942 468.86 352.62 -60.71 145 168.72 169.6 0.88m@8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m@2.91pp 465757.8 6815942 468.86 352.62 -60.71 <td></td>										
KARD158 KARD158 KARD158 KARD160 KARD161 KAR										· ·
KARD158 KARD160 KAR		465338.8	6815837	466.8	507.26	-60.58				
KARD158 KARD160 KAR										
KARD158 KARD160 KAR										
KARD158 KARD158 KARD158 And 225 225.76 0.76m@2.10pp and 232.12 233 0.88m@11.10pp and 244.45 244.94 0.49m@5.60pp and 266.13 267.27 1.14m@4.28pp and 321.41 321.88 0.47m@4.12pp and 335.69 336.09 0.4m@3.51ppr and 349.96 351 1.04m@3.30pp and 374.91 375.31 0.4m@4.17ppr and 378.94 379.55 0.61m@2.89pp And 378.94 379.55 0.61m@2.89pp and 399.87 3.46m@2.74pp KARD160 KARD160 KARD160 KARD160 KARD160 And 189 189.4 0.4m@5.83ppr and 189 189.4 0.4m@5.83ppr and 126 126.45 0.45m@3.21pp and 130 130.9 0.9m@2.17ppr and 136.17 137.45 1.28m@3.30pp and 144 144.57 0.57m@4.84pp and 152.66 157.4 4.74m@2.21pp										
KARD158 KARD158 KARD158 KARD158 KARD158 KARD160 KARD160 KARD161 KAR										
KARD158 And 244.45 244.94 0.49m @ 5.60pp										0.88m @ 11.10ppm
KARD168 and 266.13 267.27 1.14m @ 4.28pp and 321.41 321.88 0.47m @ 4.12pp and 335.69 336.09 0.4m @ 3.51ppr and 349.96 351 1.04m @ 3.30pp and 374.91 375.31 0.4m @ 4.17ppr and 378.94 379.55 0.61m @ 2.89pp and 396.41 399.87 3.46m @ 2.74pp KARD160 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp and 189 189.4 0.4m @ 5.83ppr 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp and 126 126.45 0.45m @ 3.21pp and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp ARRD161 and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp and 152.66 157.4 4.74m @ 2.21pp and 152.66 157.4 4.74m @ 2.21pp	_									
KARD161 465872.1 6815942 468.86 352.62 -60.71 145 122 123.38 0.47m @ 4.12pp ARRD161 4ARD161 4ARD161 <td< td=""><td>KARD158</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	KARD158									
ARD160 And 335.69 336.09 0.4m @ 3.51ppr and 349.96 351 1.04m @ 3.30pp and 374.91 375.31 0.4m @ 4.17ppr and 378.94 379.55 0.61m @ 2.89pp and 396.41 399.87 3.46m @ 2.74pp 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp and 126 126.45 0.45m @ 3.21pp and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp KARD161 KARD161										0.47m @ 4.12ppm
KARD160 465872.1 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.17ppr ARD161 48757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 465757.8 468.86 352.62 -60.71 145 126 157.45 1.28m @ 3.30pp ARD161 471.22 472.82 472.82 <									336.09	0.4m @ 3.51ppm
KARD160 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp ARD161 and 130 130.9 0.9m @ 2.17ppr ARD161 and 144 144.57 0.57m @ 4.84pp										
KARD160 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 467757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 469.86 352.62 -60.71 145 126 126.45 0.45m @ 2.17pp										0.4m @ 4.17ppm
KARD160 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 465757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 465757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 465757.8 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp 465757.8 468.86 352.62 -60.71 145 126 126.45 0.45m @ 3.21pp 465757.8 468.86 352.62 -60.71 474 130.9 0.9m @ 2.17ppr 465757.8 474 474.57 137.45 1.28m @ 3.30pp 136.17 137.45 1.28m @ 3.30pp <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.61m @ 2.89ppm</td></td<>										0.61m @ 2.89ppm
KARD160 465872.1 6815826 471.22 294.9 -60.3 145 168.72 169.6 0.88m @ 8.45pp 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp And 126 126.45 0.45m @ 3.21pp 0.9m @ 2.17ppr 0.9m @ 2.17ppr ARRD161 And 136.17 137.45 1.28m @ 3.30pp 0.57m @ 4.84pp ARRD161 And 152.66 157.4 4.74m @ 2.21pp										3.46m @ 2.74ppm
KARD160 and 189 189.4 0.4m @ 5.83ppr 465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp and 126 126.45 0.45m @ 3.21pp and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp ARRD161 and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp		465872.1	6815826	471.22	294.9	-60.3	145		169.6	0.88m @ 8.45ppm
465757.8 6815942 468.86 352.62 -60.71 145 122 123.38 1.38m @ 2.91pp and 126 126.45 0.45m @ 3.21pp and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp ARRD161 and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp	KARD160						and			0.4m @ 5.83ppm
KARD161 and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp		465757.8	6815942	468.86	352.62	-60.71	145	122	123.38	1.38m @ 2.91ppm
KARD161 and 130 130.9 0.9m @ 2.17ppr and 136.17 137.45 1.28m @ 3.30pp and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp							and			0.45m @ 3.21ppm
KARD161 and 136.17 137.45 1.28m @ 3.30pp and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp							and	130		0.9m @ 2.17ppm
KARD161 and 144 144.57 0.57m @ 4.84pp and 152.66 157.4 4.74m @ 2.21pp										1.28m @ 3.30ppm
KARD161 and 152.66 157.4 4.74m @ 2.21pp	WARR (0.57m @ 4.84ppm
	KARD161						_			4.74m @ 2.21ppm
							and	159.48	160.34	0.86m @ 5.27ppm
							_			0.9m @ 2.57ppm
										0.73m @ 2.22ppm
										0.6m @ 2.22ppm
	KARD162	465597.8	6815768	468.36	363.91	-60.42				4m @ 3.75ppm


					İ	and	167.71	168.33	0.62m @ 5.19ppm
						and	186.17	186.74	0.57m @ 23.80ppm
						and	246.06	248.46	2.4m @ 3.07ppm
						and	340	340.54	0.54m @ 2.99ppm
	465449.4	6815969	467.78	451.35	-60.89	145	159.46	160.46	1m @ 3.75ppm
	403443.4	0013303	407.70	431.33	00.03	and	163.9	164.23	0.33m @ 2.29ppm
KARD163						and	273.97	277	3.03m @ 25.13ppm
KARDIOS						and	325.45	325.95	0.5m @ 2.55ppm
						and	420	421	1m @ 2.79ppm
	465543.1	6815548	467.6	310.46	-59.78	145	30	31	1m @ 2.79ppm
	403343.1	0013346	407.0	310.40	-39.76		42	44	2m @ 2.46ppm
KARD164						and			- ''
KARD165						and	262.4	263	0.6m @ 3.57ppm
						and	271	272	1m @ 3.41ppm
			166 -0		64.40	and	288	289	1m @ 2.21ppm
KAKD105	465318.7	6815725	466.52	451.45	-61.43	145	146.88	150	3.12m @ 11.43ppm
						and	208.92	209.66	0.74m @ 4.08ppm
						and	316.05	317.72	1.67m @ 4.24ppm
						and	421.9	422.32	0.42m @ 6.35ppm
KARD1CC	465525.9	6815434	467.69	304.08	-60.85	145	155.16	155.46	0.3m @ 3.75ppm
KARD166						and	169.8	170.59	0.79m @ 4.40ppm
						and	210	211	1m @ 3.16ppm
						and	226	227	1m @ 2.01ppm
						and	270.67	271.11	0.44m @ 10.10ppm
	465610.3	6815591	468.28	324.88	-61.19	145	127	128	1m @ 2.58ppm
						and	180	181.5	1.5m @ 5.42ppm
KARD167						and	201.64	202.4	0.76m @ 2.00ppm
						and	279.34	280	0.66m @ 2.13ppm
						and	287.5	288.18	0.68m @ 3.32ppm
						and	306.84	307.16	0.32m @ 2.97ppm
	465699	6815851	468.75	375.95	-60.48	145	35	36	1m @ 2.50ppm
						and	127.5	128.42	0.92m @ 3.02ppm
KARD168						and	234	235	1m @ 2.40ppm
						and	318	320	2m @ 8.03ppm
						and	337	338	1m @ 3.31ppm
		BURTV				RTON GOI ternal dilu	_D PROJE	СТ	
BVRC704	466499	6817998	481	90	-58.7	102.4	35	36	1m @ 0.60ppm
BVRC712	465963	6816784	473	60	-60	90	37	39	2m @ 0.73ppm
BVRC716	465713	6815897	469	72	-58	93	59	64	5m @ 1.10ppm
BVRC717	465667	6815898	469	72	-60	100.1	69	72	3m @ 1.73ppm
BVRC720	465316	6815896	467	78	-61.4	100.7	57	64	7m @ 2.27ppm
BVRC722	465120	6815902	467	90	-59.8	107.7	80	81	1m @ 0.52ppm
BVRC723	465008	6815901	466	114	-67.4	115.6	58	59	1m @ 1.21ppm
BVRC724	466149	6815501	471	72	-57.9	90.2	26	27	1m @ 1.82ppm
	465970	6815540	470	72	-58.3	98.2	26	30	4m @ 3.01ppm
BVRC725	133370			· · -	30.0	and	39	43	4m @ 2.08ppm
	466048	6815502	470	77	-58.1	103	45	48	3m @ 1.54ppm
BVRC726	7000+0	001002	470	,,	50.1	and	55	66	11m @ 1.04ppm
BVRC727	465847	6815498	469	48	-59	100.9	45	47	2m @ 5.13ppm
DVRC/Z/	403047	0013430	409	40	-39	100.9	43	4/	ZIII @ J.13ppiii

BVRC729	465649	6815504	468	30	-60	90	0	1	1m @ 1.02ppm
BVRC731	465445	6815501	467	42	-60.8	96.7	39	40	1m @ 0.68ppm
BVRC732	465355	6815499	467	90	-57.6	100.5	72	76	4m @ 1.05ppm
BVRC733	465253	6815500	466	102	-59.1	114.1	52	53	1m @ 0.67ppm
KSAC019	466030	6813788	472	62	-60	135	46	47	1m @ 0.77ppm
KSAC029	465324	6814503	467	57	-60	135	56	57	1m @ 1.00ppm
KSAC057	466216	6810980	476	85	-60	135	62	66	4m @ 0.87ppm
KSAC068	463701	6810479	458	52	-60	135	35	36	1m @ 2.19ppm

Competent Person's Statement

The information in this announcement that relates to Exploration Results is based on information compiled by Mr Jeff Ion, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM) and a Member of the Australian Institute of Geoscientists (AIG). Mr Ion holds shares in Focus Minerals Limited and is a director of Jeffrey Geo Pty Ltd, under contract to Focus Minerals Limited. Mr Ion has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Ion consents to the inclusion in the announcement of the matters based on the information compile by him in the form and context in which it appears.

T: +61 8 9215 7888 F: +61 8 9215 7889

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
	Karridale Drilling
Sampling techniques	 This part of the report relates to results from Reverse Circulation (RC) drilling and diamond core drilling. The information of sampling techniques below applies to the drill holes drilled by Focus only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis with the bulk drill sample collected in plastic bags and stored on site pending programme completion. Diamond core was collected into standard plastic core trays. Down hole depths were marked onto wooden core blocks and stored in the trays. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. Samples were collected in uniquely numbered calico bags. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. The sample widths varied between a nominal minimum of 0.2m and a maximum of 1m. A cut line was drawn on the core to guide the cutting process. Whenever possible the cutline was drawn parallel to and close to the down hole core orientation line to ensure the cut-line was consistent over the hole. The core was cut in half using an automatic core saw and samples put into uniquely numbered calico bags.
	Burtville Regional Drilling
	 This part of the report relates to results from Reverse Circulation (RC) drilling and aircore (AC) drilling. The information of sampling techniques below applies to the drill holes drilled by Focus only Both RC and AC drill samples were collected from a cyclone at 1m intervals. All drill samples were plastic bagged and placed on the ground beside the collar in drill order pending programme completion. Initial sampling was by spear into the open top of the plastic bag with samples being composited over 4m intervals. Composite samples deemed anomalous were resampled by spear on a 1m individual basis. Samples for the laboratory were nominally 3kg and collected in uniquely numbered calico bags.
	Karridale Drilling
Drilling techniques	 All drilling at Karridale was completed using a face sampling hammer or NQ2/HQ size diamond core. Where ground conditions were good enough to allow, holes were surveyed by electronic single shot down hole compass at 30m intervals during drilling. At hole completion, a self-northing gyrocompass was used to survey the entire hole from within the rods. Wherever core conditions would allow, drill core was oriented by the drilling contractor using an Ezy-mark system.
teominques	Burtville Regional Drilling
	 The regional drilling was completed by a combination of face sampling hammer RC or standard AC bit. An AC hammer was used for hard bands and veins as required. All holes stopped once fresh rock was reached. Holes were terminated if groundwater was intersected. Due to the generally shallow depth of drilling and the greenfields nature of the targets, down hole surveys were not attempted.

Criteria	Commentary
	Karridale Drilling
Drill sample recovery	 RC sample recovery / quality was visually checked and noted during the logging process. RC samples were generally dry and had typically good recovery. DD sample recovery was measured and calculated (core loss) during the logging process. DD core had generally excellent recovery. No formal study of grade verses recovery has been done. However no cause for concern was noted during logging.
	Burtville Regional Drilling
	RC and AC sample recovery / quality was visually checked and noted during the logging process. No cause for concern was seen.
Logging	 All RC, AC and DD material (entire holes) were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. All DD core was also logged for structure, including orientation data where a reliable core orientation line could be achieved. Orientation lines were only drawn where they were supported by multiple orientation marks. Basic geotechnical measurements were recorded such as fracture frequency and RQD. S.G. readings were collected on a broad selection of different rock types both mineralised and unmineralised. The logging information was recorded into acQuire format using a Toughbook notepad and then transferred into the company's drilling database once the log was complete. Diamond core was photographed wet and dry one core tray at a time using a standardised photography jig. Samples from RC holes were photographed and then archived in standard 20m plastic chip trays.
Sub-sampling techniques and sample preparation	 Core samples were taken from half core, cut using an automatic core saw. The remainder of the core was retained in core trays tagged with a hole number and metre mark. RC samples were cone split, by a splitter mounted beneath the rig cyclone, to a nominal 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag. Where possible all RC samples were drilled dry to maximise recovery. The use of a booster and auxiliary compressor provide dry sample for depths well below the water table. Sample condition was recorded (wet, dry or damp) at the time of sampling and recorded in the database. AC samples were dry as holes did not extend below the water table. RC and AC samples in excess of 3kg were crushed to nominal 6mm size and riffle spilt to sub 3kg. DD core was crushed to 6mm prior to further preparation. Samples were oven dried and pulverised to 75µm prior to digest. Gold analysis was by 50gm fire assay. Other multi-element (not gold) analysis utilised 50 or 30gm subsamples. Selected samples that returned gold values in excess of 5g/t were, as a precaution, routinely re-assayed using a screen fire assay technique that is designed to minimise the influence of any coarse gold particles. No concerns in repeatability of high grade gold were noted. The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion. Focus inserts 3 standards and takes 5 duplicates for every 100 samples.

Criteria	Commentary
	Field duplicates were collected from the cone splitter on the rig for RC samples at a frequency of one duplicate every 20 samples, excluding the 100th sample as this was a standard. AC duplicates were collected manually with the spear. Diamond core duplicates were not taken during this drilling program. Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out. The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.
Quality of assay data and laboratory tests	 The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample. Gold analysis was determined by a 50g fire assay with lead collection, aqua regia digest and AAS finish. This technique was considered appropriate as it gives (effectively) a complete digest for gold Every DD core sample and every 5th RC sample was run for multi-element (Ag, As, Cd, Cr, Pb, Sb, Te, Zn, Zr, Ti) by aqua regia 50 or 30gm digest and ICP-MS or ICP-OES finish. For the majority of AC holes, every 5th sample was run as for the RC. For a minor number of AC holes a 4 acid digest was used instead of aqua regia. Digests such as aqua regia were not considered complete for some elements other than gold, but were sufficient for lithochemistry and mineralisation pathfinder purposes. Digests such as aqua regia and 4 acid were not considered complete for some elements, but were sufficient for lithochemistry and mineralisation pathfinder purposes. No geophysical tools, field spectrometers or handheld XRF instruments were used in analysis of results provided. All analytical work was carried out by a certified major laboratory with appropriate expertise. Focus regularly ran internal QA / QC checks on its standards and duplicates. The laboratory had its own independent QA / QC procedures and materials. The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances, with appropriate follow-up if required.
Verification of sampling and assaying	 Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process. Historic data is not going to be used in any future resource calculations, so no historic holes have been twinned. Primary data were sent in digital format to the company's Database Administrator (DBA) as often as was practicable. The DBA imported the data into an acQuire database, with assay results merged into the database upon receipt from the laboratory. Once loaded, data was extracted for verification by the geologist in charge of the project. No adjustments were made to any current or historic assay data. Where multiple assays exist for a sample, the most rigorous technique is given priority – e.g.; screen fire assay results are prioritised over fire assay results.
Location of data points	 Drill collars were surveyed after completion using a DGPS instrument. Downhole surveys as discussed above. All coordinates and bearings use the MGA94 Zone 51 grid system. Focus utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. For purposes of exploration or drill planning, historic collar RL data was adjusted to match modern DTMs (digital terrain models). It is not intended to use historic data in future resource calculations.

Criteria	Commentary
	Karridale Drilling
Data spacing and distribution	 Drill spacing is considered too broad (current collar spacing is at best 40m x 80m and typically 80m x 80m or broader) for resource definition. Focus is intending to infill the current spacing prior to carrying out a Mineral Resource estimation. No sample compositing.
	Burtville Regional Drilling
	This work was considered greenfields exploration and not resource work.
	Karridale Drilling
Orientation of data in	Drill azimuth and dip directions considered close to optimum for flatly northwest dipping mineralisation. Acceptable for steep north striking mineralisation.
relation to geological	Burtville Regional Drilling
structure	Given the general north trend to regional stratigraphy and the northwest dip of postulated structural targets, the east to southeast azimuth on regional holes is considered acceptable.
Sample security	 All samples received from the laboratory were reconciled against the sample submission with any omissions or variations reported to Focus. All samples were bagged in tied numbered calico bags, grouped into zip locked or wire tied green plastic bags. The bags were placed into bulka bags and delivered by company personnel to a public courier service for delivery to the laboratory. Consignment notes tracked the courier's sample delivery.
Audits or reviews	 A review of sampling techniques was carried out by an external consulting group in late 2013 as part of a database amalgamation project. No significant changes were recommended for the Focus Laverton system of sampling. All results are continually reviewed by experienced in-house geologists and the database administrator.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status	 Tenements M38/73 and M38/89 are 96% beneficially held by Focus Minerals (Laverton) Pty Ltd under the Merolia JV with GSM Mining Company Pty Ltd. All other tenements worked in the drilling covered by this announcement are held 100% by Focus Minerals (Laverton) Pty Ltd. Privately held royalties exist. Refer to the Focus Minerals 2014 Annual Report released 16/04/2015. The tenements are in good standing and no impediments to future exploration or permitting are known.
Exploration done by other parties	 Karridale is a site of historic mine workings. A number of companies such as Delta Gold and Sons of Gwalia have explored in the area. Previous exploration details are available through the Department of Mines and Petroleum. The results of previous exploration by other parties were used only as an exploration guide. Focus does not intend to use such work in development or resource studies.
Geology	Two km to the north of Karridale, the Burtville granodiorite is interpreted to

be at the core of a polyphase intrusive complex that are interpreted to include more mafic rocks such as tholeiitic gabbro and calc-alkaline dolerite. The intrusives are focused within pelitic and arkosic sediments at the core of the Burtville syncline (covered largely by the Burtville tenements of Focus). Stratigraphically below the sediments are basalts and then ultramafics. The sequence appears to be repeated by early thrusts, now striking north – south. A number of northeast striking thrusts are considered broad targets form gold exploration. These thrusts are displaced by north – south normal faults. The Black Swan granodiorite, 6km SSW of the Burtville granodiorite is

SSW of Burtville.Mineralisation styles identified at Karridale include:

 Flat (possible reverse thrust) northwest dipping shear zones with silica – sericite – carbonate – pyrite + arsenopyrite alteration and quartz carbonate veining.

also a focus for exploration. A third possible granodiorite is located 2 km

- Steep dipping, narrow north trending quartz veins, with silica sericite carbonate + sulphide alteration and visible gold. Associated with strongly sheared selvages.
- Hydrothermal breccia of unknown morphology and orientation. Strong silica – carbonate – sericite – arsenopyrite – pyrite alteration. Visible gold in associated quartz carbonate vein.

The mineralisation appears hosted by a package of generally fine grained intermediate volcanics or sediments intruded by dolerite or gabbro / diorite units

		units.							
	Hole Number	East GDA94z51	North GDA94z51	RL AHD	Depth	Dip	RC (m)	DD (m)	Total Depth (m)
	KARD155	465333.62	6815984.06	467.26	145	-61.07	149.7	400.87	550.57
	KARC156	465922.05	6815572.65	470.01	145	-61.06	138		138
	KARC157	465889.95	6815548.71	469.53	145	-60.76	138		138
	KARD158	465338.78	6815836.97	466.80	145	-60.58	157.7	349.56	507.26
	KARC159	465904.62	6815459.57	469.50	145	-60.69	198		198
	KARD160	465872.1	6815825.71	471.22	145	-60.3	120.7	174.2	294.9
	KARD161	465757.75	6815942.15	468.86	145	-60.71	101.6	251.02	352.62
	KARD162	465597.75	6815767.83	468.36	145	-60.42	119.8	244.11	363.91
	KARD163	465449.37	6815968.77	467.78	145	-60.89	119.9	331.45	451.35
	KARD164	465543.05	6815547.99	467.60	145	-59.78	119.4	191.06	310.46
Drill hole	KARD165	465318.7	6815724.58	466.52	145	-61.43	119.6	331.85	451.45
Information	KARD166	465525.88	6815433.53	467.69	145	-60.85	120	184.08	304.08
	KARD167	465610.32	6815591.12	468.28	145	-61.19	119.4	205.48	324.88
	KARD168	465698.98	6815850.68	468.75	145	-60.48	119.7	256.25	375.95
							1841.5	2919.93	4761.43
			Al	ove: Ka	rridale	Drill Ho	les		
	Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То

Abovo. Namadio Billi Holos										
Hole ID	Easting	Northing	RL	Depth	Dip	Azimuth	From	То		
	(MGA 94 Zone	51)	(m)			(m)	(m)		
BVRC704	466499	6817998	481	90	-58.7	102.4	35	36		
BVRC712	465963	6816784	473	60	-60	90	37	39		
BVRC716	465713	6815897	469	72	-58	93	59	64		
BVRC717	465667	6815898	469	72	-60	100.1	69	72		
BVRC720	465316	6815896	467	78	-61.4	100.7	57	64		
BVRC722	465120	6815902	467	90	-59.8	107.7	80	81		

Criteria	Comme	ntary								
	BVRC723	465008	6815901	466	114	-67.4	115.6	58	59	
	BVRC724	466149	6815501	471	72	-57.9	90.2	26	27	
	BVRC725	465970	6815540	470	72	-58.3	98.2	26	30	
							and	39	43	
	BVRC726	466048	6815502	470	77	-58.1	103	45	48	
							and	55	66	
	BVRC727	465847	6815498	469	48	-59	100.9	45	47	
	BVRC729	465649	6815504	468	30	-60	90	0	1	
	BVRC731	465445	6815501	467	42	-60.8	96.7	39	40	
	BVRC732	465355	6815499	467	90	-57.6	100.5	72	76	
	BVRC733	465253	6815500	466	102	-59.1	114.1	52	53	
	KSAC019	466030	6813788	472	62	-60	135	46	47	
	KSAC029	465324	6814503	467	57	-60	135	56	57	
	KSAC057	466216	6810980	476	85	-60	135	62	66	
	KSAC068	463701	6810479	458	52	-60	135	35	36	
	Above: Regional AC/RC Drill Holes with Significant Intercepts.									
	Not all regional drill collars are provided in the table above. The programme									
	a first pass test of broad conceptual greenfields target areas and holes that d not intersect significant gold do not detract from the prospectivity of the identifie									
										itied
	targets. All hole collars are shown in Figure 4.									
Data	Relevant drill intercept selection techniques given below each table. No grade outting was used an drill intercepts.									
	 No grade cutting was used on drill intercepts. No metal equivalents were used. 									
	·									
Relationship	Holes were drilled orthogonal to mineralisation as much as possible, however the exact relationship between intercept width and true width cannot be estimated exactly in all cases.									
between mineralisation										
widths and	Samot be committed exactly in an eases.									
intercept										
lengths										
Diagrams	Refer to Figures and Tables in body of the release									
Balanced	No resource modelling has commenced and therefore it is too early to define									
reporting	mineralised shapes and discuss continuity of mineralisation.									
Other	There is no other material exploration data to report at this time. Information									on
substantive	relevant to resource studies (e.g. density and metallurgical testing) will be provided in association with any such study.									
exploration data	provid	ded in ass	sociation wi	th any s	uch st	udy.				
uata										
	Karridale Drilling									
	The company is further reviewing the exploration results, follow-up drilling is									
	intended to be of an infill nature, with the aim of getting a significant part of									
	the Karridale to a 40m x 40m collar spacing to allow the calculation of a mineral resource. The work will be undertaken in stages and each stage dependent on prior results.									
Further work										
	Burtville Regional Drilling									
	 Targets identified in the regional drilling will be followed up with infill holes of similar drilling. Timing of such work is still to be decided on. 									
	l .									