

ASX ANNOUNCEMENT 7 April 2016

Australian Securities Exchange Code: NST

Board of Directors

Mr Chris Rowe Non-Executive Chairman

Mr Bill Beament Managing Director

Mr Peter O'Connor Non-Executive Director

Mr John Fitzgerald Non-Executive Director

Ms Liza Carpene Company Secretary

Issued Capital

Shares 600M Options 4M

Current Share Price A\$3.51

Market Capitalisation A\$2.1 billion

Cash and Cash Equivalents 31 Dec 2015 - A\$226 million

Level 1, 388 Hay St Subiaco WA 6008 **T** +6 8 6188 2100 **F** +6 8 6188 2111 **E** info@nsrltd.com **www.nsrltd.com**

ABN: 43 092 832 892

Significant results reveal continuous 2km-long deposit at Kundana

Latest drilling shows the three K2 deposits join at depth, highlighting potential for Kundana to improve on its 100,000-110,000ozpa production forecasts for many years

KEY POINTS

- Latest drilling at the East Kundana JV near Kalgoorlie indicates that the three mining centres on the K2 structure (Pegasus, Rubicon and Hornet) all join at depth, creating a 2km-long orebody
- The outstanding results suggest Kundana could produce more than the forecast 100,000-110,000ozpa contribution to the 700,000ozpa target Northern Star has set for 2018
- Latest results from Pegasus include:
 - 1.1m at 131.0gpt (est true width 0.4m)
 - 3.4m at 19.9gpt (est true width 0.9m)
 - 16.0m at 4.5gpt (est true width 12.0m)
- Latest results at Rubicon include:
 - 4.0m at 44.2gpt (est true width 1.6m)
 - 2.3m at 34.1gpt (est true width 1.6m)
 - 2.5m at 29.3gpt (est true width 1.8m)
- Latest results at Hornet include:
 - 49.0m at 8.6gpt (est true width 25.0m)
 - 6.3m at 18.2gpt (est true width 4.7m)
 - 38.8m at 5.8gpt (est true width 30.0m)
- New drilling results at the Raleigh mine (1.1Moz at 13.9gpt mined to date) indicate the orebody remains open at depth and to the south with potential for substantial extensions to mine life. Latest results include:
 - 0.3m at 1,400gpt (est true width 0.2m)
 - 1.0m at 241.4gpt (est true width 0.7m)
 - 0.3m at 800gpt (est true width 0.2m)
- Significant drilling results from the Pode structure (which is a splay off the Pegasus deposit and is not in the current Pegasus mine plan). Results include:
 - 17.0m @ 17.0gpt (est true width 15.0m)
 - 4.2m @ 47.0gpt (est true width 2.6m)
- New high-grade structure, Falcon, discovered just 300m west of Pegasus. Significant hits include:
 - 9.3m @ 27.9gpt (est true width 7.0m)
 - 5.1m @ 17.4gpt (est true width 4.0m)
- Significant capital investment in Kundana is delivering substantial operational gains with a record of 64,534oz¹ mined in the March Quarter

¹ Northern Star Resources Limited (ASX: NST) (51%), Rand Mining Ltd (ASX: RND) (12.25%) and Tribune Resources Ltd (ASX: TBR) (36.75%) respectively.

Northern Star Resources Limited (ASX: NST) is pleased to advise that three of the major deposits at the East Kundana Joint Venture (Northern Star 51%) near Kalgoorlie are connected at depth, forming a continuous 2kmlong orebody. Joint Venture Partners, Rand Mining Ltd (ASX: RND) and Tribune Resources Ltd (ASX: TBR) own the remaining 49%, with 12.25% and 36.75% respectively.

This major development stems from the latest high-grade drilling results at the Pegasus, Rubicon and Hornet deposits on the K2 structure at Kundana.

The discovery has significant implications because it means Kundana is now poised to exceed its production forecast of between 100,000-110,000ozpa for many years.

Northern Star is in the throes of increasing its total production from ~570,000ozpa currently to 700,000ozpa by 2018. It has earmarked its 51 per cent share of Kundana to contribute 105,000ozpa to this total.

Kundana exceeded this target comfortably in the March quarter, with a record of 64,534oz mined for the 100% total EKJV. The EKJV results for the month of March were particularly strong, with 27,872oz mined, 20,381oz milled and 28,697oz left on stockpiles, up from 21,207oz at the end of February.

Northern Star Managing Director Bill Beament said confirmation that the three K2 deposits were joined at depth would lead to substantial increases in production and mine life at Kundana.

"We have three of the highest grade deposits in Australia, which are already outstanding in their own rights, linking up at depth to form a continuous 2km-long orebody," Mr Beament said.

"The implications of this for Kundana and Northern Star are significant. And when we take into account the latest significant results from elsewhere at Kundana, including in the Pode and the newly discovered Falcon structure, it becomes clear that this world-class project will make a growing contribution towards us meeting our 700,000ozpa target by 2018."

In recognition of the continuity of the orebody at depth, a proposed drill-drive is being designed to enable drill coverage at depth from underground (Figure 1). This key infrastructure will enable a significant zone between the Pegasus, Rubicon and Hornet deposits to be drill-tested. This area will also be excavated to provide production access.

A proven strategy for achieving production growth at Kundana has involved having the flexibility to produce from multiple stoping fronts. This drill-drive approach will enable that to occur.

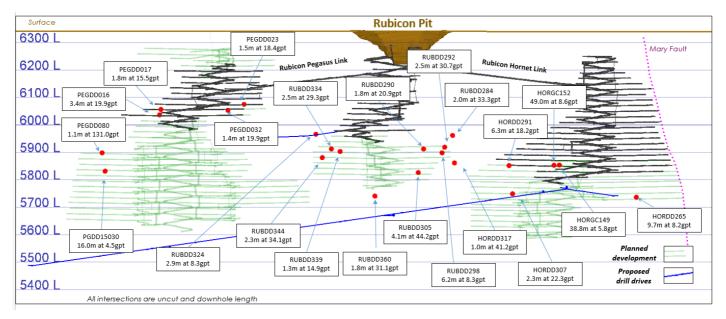


Figure 1: Pegasus - Rubicon - Hornet - Significant drilling results

The prospect of further production growth at Kundana has been further strengthened by new drilling results from the Raleigh mine which indicate that the orebody is open at depth and to the south.

The results, which include 0.3m at 1,400gpt, 1.0m at 241.4gpt and 0.3m at 800gpt, point to the potential of a significant expansion of the existing Raleigh mineral inventory (Figure 2).

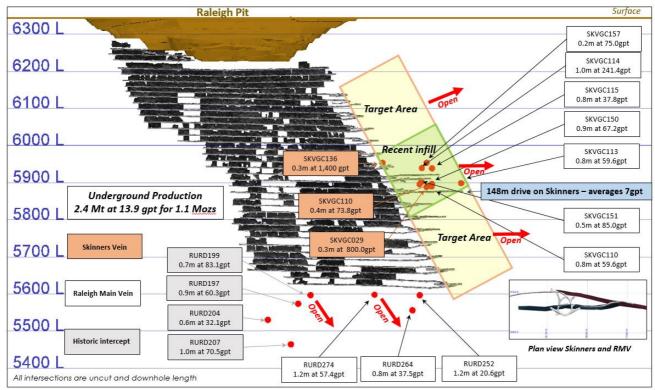


Figure 2 : Raleigh and Skinners Vein – Significant drill intersections

Drilling on the Pode structure, which is a splay off the Pegasus deposit, returned high-grade results with potential for additions to the mineral inventory (Figure 3). The hits at Pode include 17m at 17gpt and 4.2m at 47.0gpt.

The latest drilling also located a new structure, called Falcon, located just 300m from the Pegasus deposit, with results including 7m at 27.4gpt and 3m at 50.4gpt (Figure 3).

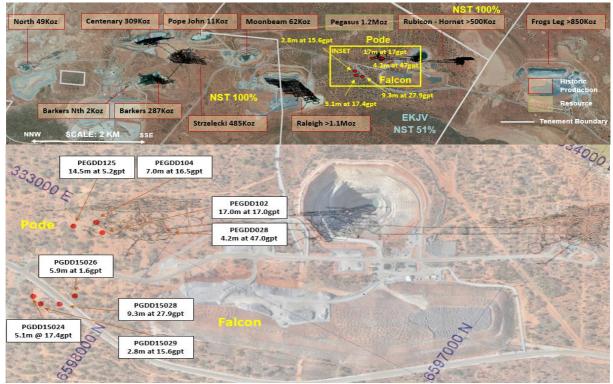


Figure 3 : Pode and Falcon - Significant drill intersections

Mr Beament said drilling was continuing at Kundana with a view to calculating an updated Resource-Reserve estimate by mid-year.

Yours faithfully

Bill Beament

BILL BEAMENT Managing Director Northern Star Resources Limited

Investor Enquiries:

Luke Gleeson, Investor Relations, Northern Star Resources Limited T: +61 8 6188 2103 E: Igleeson@nsrltd.com

Competent Persons Statements

The information in this announcement that relates to exploration results, data quality and geological interpretations, is based on information compiled by Darren Cooke, a Competent Person who is a Member of the Australian Institute of Geoscientists and a full-time employee of Northern Star Resources Limited. Mr Cooke has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" for the Company's EKJV Project area. Mr Cooke consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

Forward Looking Statements

Northern Star Resources Limited has prepared this announcement based on information available to it. No representation or warranty, express or implied, is made as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this announcement. To the maximum extent permitted by law, none of Northern Star Resources Limited, its directors, employees or agents, advisers, nor any other person accepts any liability, including, without limitation, any liability arising from fault or negligence on the part of any of them or any other person, for any loss arising from the use of this announcement or its contents or otherwise arising in connection with it.

This announcement is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any security, and neither this announcement nor anything in it shall form the basis of any contract or commitment whatsoever. This announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

APPENDIX 1 – RESULTS

			HORNET	AND RUB	ICON SIG	GNIFICAN	IT INTERSE				
Drill Hole # HORDD224	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m) 0.5	Au (gpt) uncut 48.0	Est True Thickness (m)
HORDD224	9810 9819	15607 15599	5896 5898	-50	110	162.00 51.20	55.32 44.23	55.78 47.51	3.3	40.0 5.7	0.1
HORDD241	9820	15600	5898	2	98	99.14	21.34	23.46	2.1	7.7	2.0
HORDD241	9820	15600	5898	2	98	99.14	44.80	46.52	1.7	6.5	1.7
HORDD241	9820	15600	5898	2	98	99.14	50.05	51.60	1.6	7.0	1.5
HORDD242	9820	15600	5897	-14	87	39.90	24.39	25.00	0.6	5.6	0.6
HORDD242	9820	15600	5897	-14	87	39.90	27.37	30.11	2.7	13.6	2.7
HORDD242	9820	15600	5897	-14	87	39.90	32.40	34.39	2.0	6.6	2.0
HORDD242	9820	15600	5897	-14	87	39.90	39.32	39.59	0.3	6.9	0.3
HORDD243 HORDD243	9821 9821	15601 15601	5898 5898	5	68 68	95.57 95.57	25.44 47.60	35.25 52.63	9.8 5.0	10.3 10.5	9.0 4.5
HORDD243	9821	15601	5898	5	68	95.57	75.84	77.23	1.4	15.8	1.3
HORDD243	9821	15601	5897	-15	64	42.03	18.00	19.71	1.7	11.6	1.6
HORDD247	9820	15603	5896	-27	41	86.13	20.55	22.30	1.8	17.9	1.2
HORDD247	9820	15603	5896	-27	41	86.13	61.26	62.94	1.7	21.0	1.1
HORDD252	9820	15599	5897	-17	109	114.04	32.89	37.79	4.9	8.9	4.0
HORDD252	9820	15599	5897	-17	109	114.04	52.08	53.34	1.3	29.1	1.0
HORDD254	9794	15456	5875	-19	158	116.89	97.31	98.71	1.4	2.7	0.4
HORDD255	9794	15457	5874	-58	121	123.00	71.65	73.36	1.7	4.1	0.7
HORDD255 HORDD262	9794 9794	15457	5874 5874	-58 -29	121 156	123.00	102.97	108.53 127.34	5.6 0.9	1.6 3.3	3.2
HORDD262 HORDD265	9794	15457 15457	5874	-29 -65	156	165.51 221.30	126.46 158.46	127.34	9.7	<u> </u>	0.3
HORDD265	9794	15457	5874	-65 -37	153	179.90	158.46	141.68	9.7	3.0	0.2
HORDD200	9794	15456	5874	-25	150	160.00	39.55	40.67	1.1	21.6	0.2
HORDD271	9794	15456	5874	-25	150	160.00	132.12	134.48	2.4	0.2	0.9
HORDD287	9786	15599	5857	4	7	305.90	70.91	71.59	0.7	8.6	0.1
HORDD287	9786	15599	5857	4	7	305.90	104.67	105.33	0.7	12.5	0.1
HORDD287	9786	15599	5857	4	7	305.90	214.22	217.23	3.0	8.2	0.6
HORDD287	9786	15599	5857	4	7	305.90	226.11	227.04	0.9	11.5	0.2
HORDD287	9786	15599	5857	4	7	305.90	231.89	232.23	0.3	7.6	0.1
HORDD287	9786	15599	5857	4	7	305.90	287.25	288.21	1.0	4.9	0.2
HORDD287	9786	15599	5857	4	7 5	305.90	288.21	289.00	0.8	15.6 77.2	0.2
HORDD288 HORDD288	9786 9786	15599 15599	5857 5857	1	5	386.78 386.78	79.42 118.00	79.82 119.00	1.0	20.3	0.1
HORDD288	9786	15599	5857	1	5	386.78	176.30	176.92	0.6	45.9	0.2
HORDD288	9786	15599	5857	1	5	386.78	239.67	240.30	0.6	6.5	0.1
HORDD288	9786	15599	5857	1	5	386.78	348.91	349.90	1.0	11.9	0.2
HORDD288	9786	15599	5857	1	5	386.78			NSI		
HORDD289	9786	15599	5857	1	6	383.01	80.51	80.86	0.3	8.9	0.1
HORDD289	9786	15599	5857	1	6	383.01	170.26	171.14	0.9	11.0	0.2
HORDD289	9786	15599	5857	1	6	383.01	177.50	178.32	0.8	8.3	0.2
HORDD289	9786	15599	5857	1	6	383.01	304.00	306.00	2.0	4.2	0.4
HORDD289	9786	15599	5857	1	6	383.01	344.00	346.21	2.2	6.1	0.4
HORDD289 HORDD290	9786 9692	15599 15673	5857 5837	3	6 32	383.01 262.59	244.30	247.63	NSI 3.3	13.0	1.9
HORDD290	9692	15673	5837	3	37	236.74	213.08	247.83	6.3	18.2	4.7
HORDD292	9693	15672	5837	2	47	203.24	134.00	134.24	0.2	20.8	0.2
HORDD292	9693	15672	5837	2	47	203.24	146.33	146.53	0.2	22.3	0.2
HORDD292	9693	15672	5837	2	47	203.24	150.26	151.40	1.1	17.5	0.9
HORDD292	9693	15672	5837	2	47	203.24	177.27	177.56	0.3	70.8	0.2
HORDD292	9693	15672	5837	2	47	203.24	186.24	187.72	1.5	13.8	1.1
HORDD294	9692	15673	5837	-5	30	259.15	241.34	244.95	3.6	2.5	2.1
HORDD295	9692	15673	5837	-6	35	227.74	212.09	213.67	1.6	14.5	1.0
HORDD296	9693	15673	5837	-13	48	200.91	165.00	169.00	4.0	8.1	3.0
HORDD296 HORDD296	9693 9693	15673 15673	5837 5837	-13 -13	48 48	200.91 200.91	170.82 173.00	171.50 173.59	0.7 0.6	28.2 19.6	0.5
HORDD296	9693	15673	5837	-13 -12	48 23	200.91	253.26	253.71	0.6	4.4	0.5
HORDD300	9692	15673	5837	-12	23	279.20	256.40	259.60	3.2	19.3	1.6
HORDD302	9690	15673	5837	-14	17	387.70	293.50	294.67	1.2	5.5	0.4
HORDD302	9690	15673	5837	-14	17	387.70	310.00	311.00	1.0	4.6	0.4
HORDD302	9690	15673	5837	-14	17	387.70	331.00	332.95	2.0	5.2	0.7
HORDD302	9690	15673	5837	-14	17	387.70			NSI		
HORDD303	9690	15672	5837	-16	19	333.40	300.00	306.60	6.6	7.5	1.9
HORDD303	9690	15672	5837	-16	19	333.40	306.60	307.65	1.1	2.9	0.3
HORDD304	9690	15673	5837	-18	21	296.70	264.40	265.70	1.3	1.7	0.6
HORDD306	9692	15673	5837	-22	27	249.10	229.90	232.30	2.4	0.9	0.9
HORDD306	9692	15673	5837 5837	-22 -26	27	249.10	236.00	237.00	1.0	24.5	0.5
HORDD307 HORDD307	9692 9692	15673 15673	5837 5837	-26	31 31	228.10 228.10	110.90 203.45	111.85 204.60	1.0	3.6 5.3	0.5
HORDD307	9692	15673	5837	-26	31	228.10	203.45	204.60	2.3	22.3	1.1
HORDD307	9693	15672	5836	-20	40	199.80	144.00	145.00	1.0	3.2	0.5
HORDD308	9693	15672	5836	-31	40	199.80	175.43	176.07	0.6	6.0	0.3
HORDD308	9693	15672	5836	-31	40	199.80	177.41	178.25	0.8	5.6	0.5
HORDD308	9693	15672	5836	-31	40	199.80	178.56	181.66	3.1	2.4	1.7
HORDD308	9693	15672	5836	-31	40	199.80	192.78	195.00	2.2	10.4	1.2
HORDD311	9691	15673	5837	-22	17	375.00	235.35	236.00	0.7	5.9	0.3
HORDD311	9691	15673	5837	-22	17	375.00	264.80	265.15	0.4	2.9	0.2
1100000211	9691	15673	5837	-22	17	375.00	275.00	275.25	0.3	17.8	0.1
HORDD311 HORDD311	9691	15673	5837	-22	17	375.00	282.60	283.05	0.5	3.1	0.2

			HORNET	AND RUB		GNIFICAN					
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
HORDD311 HORDD311	9691 9691	15673 15673	5837 5837	-22 -22	17 17	375.00 375.00	283.85 325.05	284.80 325.65	1.0 0.6	16.7 21.2	0.4
HORDD313	9690	15672	5837	-27	21	400.00	205.00	206.00	1.0	9.2	0.5
HORDD313	9690	15672	5837	-27	21	400.00	241.95	242.40	0.5	3.5	0.2
HORDD317	9691	15673	5838	3	19	408.50	395.90	396.85	1.0	41.2	0.3
HORDD318	9692	15673	5838	11	27	351.00	89.99	90.89	0.9	0.6	0.4
HORDD318	9692	15673	5838	11	27	351.00	338.74	339.44	0.7	17.1	0.4
HORDD319	9692	15673	5838	15	33	303.00	178.00	181.00	3.0	4.9	1.5
HORDD319	9692	15673	5838	15 15	33	303.00 303.00	266.00	268.10	2.1	4.8	1.0
HORDD319 HORDD335	9692 9693	15673 15673	5838 5837	-9	33 14	437.10	271.90 408.64	274.00 409.42	2.1 0.8	2.9 9.5	0.3
HORDD336	9693	15673	5837	-13	14	420.90	127.00	127.53	0.5	15.7	0.1
HORDD336	9693	15673	5837	-13	11	420.90	389.42	390.00	0.6	4.0	0.1
HORGC086	9881	15371	5909	0	269	30.31			NSI		
HORGC087A	9885	15354	5909	0	268	39.10	18.60	19.18	0.6	7.6	0.6
HORGC087A	9885	15354	5909	0	268	39.10	23.21	24.50	1.3	8.6	1.3
HORGC087A	9885	15354	5909	0	268	39.10	25.99	28.37	2.4	2.5	2.4
HORGC088	9890	15353	5909	0	87	57.00	44.36	44.84	0.5	2.2	0.5
HORGC089	9886	15331	5909	0	269	42.05	22.47	22.95	0.5	2.8	0.5
HORGC090	9886 9888	15331 15313	5911 5910	-42 0	269 268	54.42 51.08	40.34 9.40	41.58 9.91	1.2 0.5	2.3	1.0 0.5
HORGC091 HORGC092	9888	15313	5910	-39	268	62.75	7.40	7.71	0.5 NSI	∠.4	0.5
HORGC092	9893	15313	5912	-39	89	59.50	27.00	30.50	3.5	1.5	3.5
HORGC094	9888	15293	5910	0	265	51.16	23.00	25.68	2.7	16.4	2.6
HORGC116	9872	15302	5870	-32	269	57.40	1.00	11.64	10.6	6.0	8.0
HORGC116	9872	15302	5870	-32	269	57.40	20.00	22.83	2.8	2.7	2.4
HORGC118	9878	15323	5870	0	87	30.20	0.00	2.00	2.0	3.2	1.5
HORGC120	9870	15362	5868	-32	268	60.30	0.00	13.25	13.3	5.8	11.8
HORGC120	9870	15362	5868	-32	268	60.30	17.85	20.92	3.1	3.5	2.7
HORGC122	9870	15403	5868	-1	265	45.10	2.32	4.16	1.8	4.0	1.5
HORGC123	9875	15402	5869	0	87	30.30			NSI		
HORGC127	9872	15461	5867	2	88	42.20	2.05	4.00	NSI	10.1	0.7
HORGC144 HORGC145	9866 9863	15598 15620	5868 5869	0	88 87	45.30 39.10	3.25 19.35	4.00 20.25	0.8 0.9	10.1 32.4	0.7
HORGC145	9860	15638	5869	0	88	39.00	18.15	19.00	0.9	7.3	0.6
HORGC146	9860	15638	5869	0	88	39.00	20.40	21.00	0.6	3.0	0.3
HORGC147	9856	15659	5869	0	88	42.20	1.80	2.10	0.3	3.6	0.2
HORGC147	9856	15659	5869	0	88	42.20	4.15	4.45	0.3	2.0	0.2
HORGC147	9856	15659	5869	0	88	42.20	13.60	15.80	2.2	5.4	2.2
HORGC147	9856	15659	5869	0	88	42.20	28.40	28.70	0.3	14.9	0.2
HORGC149	9851	15658	5869	-33	269	63.30	0.00	10.00	10.0	3.8	7.0
HORGC149	9851	15658	5869	-33	269	63.30	11.45	50.25	38.8	5.8	30.0
HORGC149	9851	15658	5869	-33	269	63.30	56.00	58.65	2.7	5.5	2.0
HORGC152	9848	15678	5869	-33	269	57.30	0.00	49.00	49.0	8.6	25.0
HORGC152 HORGC152	Including Including						18.00	16.00 39.00	16.0 21.0	5.7	14.1 18.5
HORGC152	Including						42.90	45.00	21.0	40.0	1.5
HORGC156	9841	15720	5871	0	269	51.30	3.95	5.90	2.0	2.6	1.6
HORGC160	9844	15758	5871	0	269	48.30	4.70	4.90	0.2	3.4	0.2
HORGC160	9844	15758	5871	0	269	48.30	15.30	15.80	0.5	2.8	0.4
HORGC160	9844	15758	5871	0	269	48.30	18.00	19.00	1.0	3.4	0.9
RUBDD278	9764	16289	6016	-9	155	256.70	230.70	231.40	0.7	13.6	0.3
RUBDD280	9764	16289	6016	-15	150	210.10	1.95	6.00	4.1	1.1	3.0
RUBDD280	9764 9764	16289	6016 6016	-15 -15	150 150	210.10 210.10	11.27 26.00	19.88	8.6 2.0	2.9 6.9	4.3 0.7
RUBDD280 RUBDD280	9764	16289 16289	6016	-15	150	210.10	56.55	28.00 56.75	0.2	18.3	0.7
RUBDD280	9764	16289	6016	-15	150	210.10	192.75	193.50	0.2	3.7	0.1
RUBDD284	9764	16288	6017	-12	159	299.30	266.35	268.30	2.0	33.3	0.8
RUBDD286	9764	16289	6016	-26	147	215.40	2.00	5.75	3.8	2.0	2.0
RUBDD286	9764	16289	6016	-26	149	215.40	14.00	19.90	5.9	1.8	3.0
RUBDD286	9764	16289	6016	-26	147	215.40	194.70	195.50	0.8	4.5	0.5
RUBDD287	9764	16289	6016	-23	154	236.00	225.25	225.80	0.6	9.6	0.5
RUBDD288	9764	16289	6016	-19	153	260.20	2.00	6.00	4.0	1.7	2.0
RUBDD288	9764	16289	6016	-19	153	260.20	10.80	13.00	2.2	4.5	1.1
RUBDD288 RUBDD288	9764 9764	16289 16289	6016 6016	-19 -19	153 153	260.20 260.20	21.00 233.58	22.85 234.78	1.9 1.2	8.7	0.8
RUBDD288	9764	16289	6016	-19 -19	153	260.20	255.58	259.00	1.2	5.4	0.6
RUBDD200	9764	16289	6016	-17	148	209.60	8.30	14.25	6.0	22.2	3.0
RUBDD290	9764	16289	6016	-33	148	207.60	192.05	193.85	1.8	20.9	0.9
RUBDD292	9764	16289	6016	-22	157	269.40	2.45	3.47	1.0	2.9	0.6
RUBDD292	9764	16289	6016	-22	157	269.40	11.02	14.00	3.0	6.7	1.5
RUBDD292	9764	16289	6016	-22	157	269.40	15.84	18.00	2.2	10.8	0.9
RUBDD292	9764	16289	6016	-22	157	269.40	19.00	20.00	1.0	2.4	0.5
RUBDD292	9764	16289	6016	-22	157	269.40	23.00	24.00	1.0	4.3	0.5
RUBDD292	9764	16289	6016	-22	157	269.40	249.42	251.90	2.5	30.7	1.0
RUBDD295	9764	16289	6016	-38	148	227.70	183.50	183.90	0.4	10.7	0.2
RUBDD295	9764	16289	6016	-38	148	227.70	199.75	200.55	0.8	20.3	0.4
RUBDD297	9764 9764	16289	6016 6016	-33 -33	156 156	268.90	7.00	12.70	5.7 1.8	3.2	0.4
RUBDD297 RUBDD297	9764	16289 16289	6016	-33	156	268.90 268.90	21.00 164.58	22.80 165.05	0.5	40.8	0.8
RUBDD297	9764	16289	6016	-33	156	268.90	213.00	214.00	1.0	40.8	0.2
	//U 1	10207	0010		100	200.70	210.00	217.00	1.0	т.5	0.7

			HORNET	AND RUB	ICON SI	GNIFICAN	T INTERSE				
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
RUBDD297 RUBDD297	9764	16289	6016	-33 -33	156	268.90	245.00	246.00	1.0	4.2	0.7
RUBDD297 RUBDD298	9764 9764	16289 16288	6016 6016	-33	156 159	268.90 269.40	249.00 245.06	254.00 251.23	5.0 6.2	8.3	1.3
RUBDD298	9764	16288	6016	-29	159	269.40	240.61	260.93	0.2	12.8	0.2
RUBDD300	9764	16289	6016	-42	151	233.40	7.80	19.50	11.7	8.7	
RUBDD300	9764	16289	6016	-42	151	233.40	20.30	21.75	1.5	3.1	0.6
RUBDD300	9764	16289	6016	-42	151	233.40	152.00	152.50	0.5	14.9	
RUBDD300	9764	16289	6016	-42	151	233.40	198.00	199.00	1.0	12.0	
RUBDD300	9764	16289	6016	-42	151	233.40	217.35	221.15	3.8	21.0	1.6
RUBDD300	9764 9764	16289	6016	-42	151	233.40 317.40	219.80	221.15	1.4 15.6	49.6	0.6
RUBDD302 RUBDD302	9764	16288 16288	6016 6016	-32 -32	162 162	317.40	9.60 284.70	25.15 285.85	13.6	4.0	0.5
RUBDD302	9764	16288	6016	-32	162	317.40	288.00	288.70	0.7	2.0	0.5
RUBDD305	9764	16288	6016	-55	150	257.80	18.25	23.40	5.2	5.2	3.5
RUBDD305	9764	16288	6016	-55	150	257.80	230.45	234.55	4.1	44.2	1.6
RUBDD305	Including						231.00	233.55	2.6	68.1	1.0
RUBDD306	9764	16289	6016	-50	156	260.70	8.00	15.70	7.7	4.1	3.5
RUBDD306	9764	16289	6016	-50	156	260.70	18.00	24.60	6.6	3.0	2.4
RUBDD306	9764	16289	6016	-50	156	260.70	237.95	241.00	3.1	7.2	1.2
RUBDD307 RUBDD307	9764 Including	16289	6016	-46	159	281.50	1.00 3.50	5.40 4.00	4.4 0.5	6.5 41.3	2.2 0.3
RUBDD307	9764	16289	6016	-46	159	281.50	21.00	25.25	4.3	6.8	1.3
RUBDD307	9764	16289	6016	-46	159	281.50	57.00	57.60	0.6	21.0	0.3
RUBDD307	9764	16289	6016	-46	159	281.50	205.00	207.00	2.0	3.8	1.0
RUBDD307	9764	16289	6016	-46	159	281.50	224.00	225.00	1.0	6.9	0.5
RUBDD307	9764	16289	6016	-46	159	281.50	250.45	250.92	0.5	13.5	0.2
RUBDD308	9768	16321	6014	28	141	35.90	16.00	19.00	3.0	5.1	1.9
RUBDD309	9769	16321	6014	23	37	47.80	33.69	34.46	0.8	1.2	0.4
RUBDD312 RUBDD313	9782 9781	16336 16334	6004 6003	-28 -26	278 229	62.80 64.00	1.00	3.00 3.20	2.0	1.1	1.0
RUBDD313	9781	16334	6003	-26 -45	229	107.10	11.00	13.05	2.1	14.8	0.7
RUBDD316	9782	16335	6004	-45	228	107.10	16.00	23.55	7.6	14.0	1.6
RUBDD316	9782	16335	6004	-45	228	107.10	26.80	29.50	2.7	5.3	0.9
RUBDD316	9782	16335	6004	-45	228	107.10	36.45	37.65	1.2	6.9	0.4
RUBDD318	9739	16462	5977	12	66	133.00	116.38	116.65	0.3	16.1	0.2
RUBDD321	9739	16469	5976	3	46	164.00	62.20	63.00	0.8	5.1	0.5
RUBDD321	9739	16469	5976	3	46	164.00	137.80	139.50	1.7	2.0	1.2
RUBDD322	9739	16469	5976	5	37	178.00	75.21	75.71	0.5	4.6	0.3
RUBDD322 RUBDD323	9739 9739	16469 16469	5976 5976	5	37 30	178.00 209.70	155.82 85.31	156.95 85.62	1.1 0.3	1.8	0.7
RUBDD323	9739	16469	5976	4	30	209.70	181.38	183.24	1.9	4.1	0.2
RUBDD324	9739	16463	5976	-4	49	144.00	49.60	54.75	5.2	10.6	3.8
RUBDD324	9739	16463	5976	-4	49	144.00	57.90	58.55	0.7	6.1	0.5
RUBDD324	9739	16463	5976	-4	49	144.00	126.80	129.70	2.9	8.3	2.3
RUBDD325	9739	16469	5976	-4	39	168.00	66.05	67.50	1.5	9.5	0.9
RUBDD325	9739	16469	5976	-4	39	168.00	146.75	147.50	0.8	10.0	0.5
RUBDD326	9739	16469	5976	-5	28	203.50	85.50	86.05	0.6	2.3	0.2
RUBDD326	9739	16469	5976	-5	28	203.50	186.40	188.35	2.0	3.4	0.9
RUBDD327 RUBDD327	9739 9739	16462 16462	5976 5976	-14	55 55	135.10 135.10	51.66 115.45	52.10 116.03	0.4	10.4	0.4
RUBDD328	9739	16463	5976	-14	42	152.30	59.35	60.05	0.8	8.6	0.3
RUBDD328	9739	16463	5976	-13	42	152.30	133.65	133.90	0.3	7.8	0.4
RUBDD330	9739	16462	5975	-23	47	144.10	54.90	55.36	0.5	7.7	0.3
RUBDD330	9739	16462	5975	-23	47	144.10	117.20	128.76	11.6	1.5	6.9
RUBDD333	9738	16469	5976	-13	28	200.60	185.45	187.11	1.7	4.7	0.6
RUBDD334	9739	16463	5975	-34	73	132.00	47.42	50.00	2.6	2.2	2.1
RUBDD334	9739	16463	5975	-34	73	132.00	113.70	116.15	2.5	29.3	1.8
RUBDD336	9739	16463	5976	-29	43	155.60	55.55	58.00	2.5	6.3	1.2
RUBDD336 RUBDD337	9739 9739	16463 16463	5976 5976	-29 -26	43 32	155.60 182.90	139.70 63.60	140.60 66.10	0.9 2.5	5.1 3.0	0.5
RUBDD337	9739	16463	5976	-26	32	182.90	168.75	169.20	0.5	11.8	0.2
RUBDD339	9739	16461	5975	-38	93	150.10	46.43	48.72	2.3	4.5	4.3
RUBDD339	9739	16461	5975	-38	93	150.10	96.00	98.21	2.2	8.1	2.4
RUBDD339	9739	16461	5975	-38	93	150.10	112.70	114.44	1.7	6.7	1.4
RUBDD339	9739	16461	5975	-38	93	150.10	118.04	119.30	1.3	14.9	1.1
RUBDD340	9739	16461	5975	-37	119	168.10	52.40	52.72	0.3	5.4	0.3
RUBDD340	9739	16461	5975	-37	119	168.10	144.56	146.52	2.0	29.6	1.6
RUBDD343	9739	16461	5975	-47	92	167.20	47.00	51.00	4.0	6.4	2.9
RUBDD343 RUBDD344	9739 9740	16461 16462	5975 5975	-47 -43	92 53	167.20 152.80	134.00 52.10	134.75 57.62	0.8 5.5	1.4	0.6
RUBDD344 RUBDD344	9740	16462	5975	-43	53	152.80	137.74	140.03	2.3	34.1	1.6
RUBDD347	9739	16461	5975	-43	93	173.70	47.15	52.50	5.4	3.2	3.3
RUBDD347	9739	16461	5975	-55	93	173.70	143.00	151.22	8.2	6.6	5.3
RUBDD348	9739	16460	5975	-53	128	206.60	49.35	53.05	3.7	9.8	2.2
RUBDD350	9739	16461	5975	-62	95	195.00	46.00	51.60	5.6	4.6	
RUBDD350	9739	16461	5975	-62	95	195.00	51.60	52.10	0.5	9.4	0.3
RUBDD350	9739	16461	5975	-62	95	195.00	178.65	182.50	3.9	19.5	2.0
RUBDD351	9739	16461	5975	-60	75	194.40	46.10	54.10	8.0	9.4	4.3
RUBDD351	9739	16461	5975	-60	75	194.40	82.65	89.40	6.8	8.2	4.0
RUBDD351	9739	16461	5975	-60	75	194.40	136.00	138.00	2.0	17.7	1.0
RUBDD351	9739	16461	5975	-60	75	194.40	150.50	151.00	0.5	46.6	0.3

			HORNET	AND RUB	ICON SIG	GNIFICAN	IT INTERSE				
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
RUBDD351	9739	16461	5975	-60	75	194.40	165.30	170.65	5.4	2.3	2.9
RUBDD355	9738	16470	5976	-29	20	239.40	69.55	75.65	6.1	4.5	1.6
RUBDD355	9738	16470	5976	-29	20	239.40	223.50	224.65	1.2	7.5	0.3
RUBDD356	9738	16469	5975	-25	16	277.90	78.55	83.60	5.1	4.3	2.0
RUBDD356	9738	16469	5975	-25	16	277.90	81.15	81.92	0.8	14.2	0.2
RUBDD356	9738	16469	5975	-25	16	277.90	83.60	84.30	0.7	2.3	0.2
RUBDD356	9738	16469	5975	-25	16	277.90	239.70	240.00	0.3	18.5	0.1
RUBDD356	9738	16469	5975	-25	16	277.90	245.29	254.60	9.3	5.4	6.0
RUBDD356	9738	16469	5975	-25	16	277.90	255.10	256.10	1.0	2.0	0.2
RUBDD357	9738	16469	5975	-39	22	236.90	62.05	64.60	2.6	7.4	0.7
RUBDD357	9738	16469	5975	-39	22	236.90	218.90	220.25	1.4	14.4	0.4
RUBDD358	9738	16469	5975	-40	18	272.80	58.50	65.20	6.7	6.4	1.2
RUBDD358	9738	16469	5975	-40	18	272.80	238.45	239.00	0.6	58.9	0.2
RUBDD358	9738	16469	5975	-40	18	272.80	252.70	255.20	2.5	7.8	0.5
RUBDD360	9764	16291	6016	-76	49	314.80	7.52	8.70	1.2	18.9	0.3
RUBDD360	9764	16291	6016	-76	49	314.80	21.00	23.00	2.0	3.8	0.4
RUBDD360	9764	16291	6016	-76	49	314.80	280.00	281.80	1.8	31.1	1.1
RUBDD365	9764	16293	6015	-71	171	383.00	367.00	367.93	0.9	4.0	0.1
RUBDD368	9739	16461	5975	-69	110	254.80	43.48	44.60	1.1	0.4	0.5
RUBDD368	9739	16461	5975	-69	110	254.80	44.60	52.95	8.4	11.6	
RUBDD368	9739	16461	5975	-69	110	254.80	227.35	228.40	1.1	2.7	0.5

		RA	LEIGH SIG			ECTIONS -			٨V		
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
RURD250	8858	18075	5676	-23	139	219.2	196.00	196.52	0.5	4.1	0.4
RURD251	8859	18075	5675	-26	132	225.0	177.70	178.48	0.8	12.6	0.6
RURD252	8859	18075	5675	-29	122	198.0	125.15	125.35	0.2	798.0	0.2
RURD252	8859	18075	5675	-29	122	198.0	161.33	162.54	1.2	20.6	1.1
RURD253	8859	18075	5675	-30	111	168.3	116.00	116.25	0.3	88.3	0.2
RURD253	8859	18075	5675	-30	111	168.3	146.69	147.21	0.5	35.3	0.5
RURD254	8859	18075	5675	-34	98	191.8	135.70	136.34	0.6	53.3	0.6
RURD255	8859	18075	5675	-35	83	152.6	132.75	133.57	0.8	8.7	0.8
RURD256	8859	18075	5675	-33	66	146.6	124.35	125.65	1.3	44.5	1.1
RURD257	8861	18081	5675	-33	54	140.9	122.53	123.91	1.4	6.9	1.0
RURD263	8858	18075	5675	-42	131	203.0	179.07	179.75	0.7	27.2	0.5
RURD264	8858	18075	5675	-46	121	181.9	163.20	163.96	0.8	37.5	0.6
RURD271	9096	18060	5907	14	92	37.6	24.15	24.52	0.4	61.1	0.3
RURD272	9096	18059	5905	-35	119	35.8	19.69	19.92	0.2	24.9	0.2
RURD274	8861	18082	5676	-39	62	138.0	121.16	122.33	1.2	57.4	0.9
RURD275	8861	18082	5676	-40	94	150.0	134.60	137.00	2.4	16.3	2.2
RURD275	8861	18082	5676	-40	94	150.0	143.00	144.00	1.0	8.1	0.9
RURD276	8859	18075	5676	-33	123	189.1	119.00	119.20	0.2	34.5	0.2
RURD276	8859	18075	5676	-33 -28	123	189.1	164.14	165.05	0.9	32.2	0.8
RURD277	8859	18075	5676	-28	137	201.3 201.3	155.00	156.00	1.0	37.6	0.7
RURD277 RURD278	8859 8861	18075 18080	5676 5676	-28 -51	137 35	140.7	187.70	188.24	0.5 NSI	27.3	0.4
RURD278	8861	18080	5676	-51	59	153.0	136.95	138.88	1.9	16.7	1.8
RURD280	8861	18081	5676	-50	109	165.1	120.00	120.40	0.4	24.0	0.4
RURD280	8861	18081	5676	-51	107	165.1	151.37	151.88	0.4	69.1	0.4
SKVGC017	9087	18054	5910	31	99	51.1	43.45	45.02	1.6	6.2	1.0
SKVGC020	9095	18084	5944	20	80	63.1	51.02	51.58	0.6	67.3	0.4
SKVGC021	9096	18081	5944	23	121	77.9	52.22	52.86	0.6	28.0	0.4
SKVGC022A	9093	18089	5944	19	65	70.0	64.00	65.30	1.3	5.0	0.9
SKVGC023	9102	18096	5941	-8	141	38.6	4.83	5.19	0.4	2.3	0.2
SKVGC026	9102	18084	5940	-63	172	43.1	16.05	16.33	0.3	39.5	0.1
SKVGC029	8972	17930	5857	16	62	165.0	118.96	119.80	0.8	54.8	0.5
SKVGC029	8972	17930	5857	16	62	165.0	152.68	153.00	0.3	800.0	0.2
SKVGC032	8972	17929	5855	-46	91	129.0			NSI		
SKVGC033	8972	17929	5857	20	81	137.3	129.91	130.46	0.6	64.2	0.4
SKVGC034	8972	17928	5855	-24	97	102.0	82.63	83.00	0.4	7.3	0.4
SKVGC035	8972	17927	5855	-41	127	138.1			NSI		
SKVGC036	8971	17930	5854	-58	38	138.0	113.73	114.04	0.3	1.5	0.1
SKVGC038	8972	17929	5854	-68	77	134.5	106.12	106.82	0.7	1.4	0.5
SKVGC040	8971	17927	5854	-64	129	138.4	120.00	120.47	0.5	6.7	0.3
SKVGC041	8930	17851	5719	23	72	111.0	91.00	92.00	1.0	1.3	0.5
SKVGC042	8930	17851	5719	24	85	93.0	89.32	90.13	0.8		0.6
SKVGC043	8930	17850	5719	24	100	116.4			NSI		
SKVGC043	8930	17850	5719	24	100	116.4			NSI		
SKVGC044	8930	17850	5719	23	113	119.9	87.11	88.02	0.9	1.0	0.5
SKVGC045	8930	17854	5716	-20	28	109.0			NSI		
SKVGC047	8930	17853	5717	-29	45	92.8	88.33	88.73	0.4	1.1	0.3
SKVGC049	8930	17851	5717	-39	83	102.2			NSI		
SKVGC051	8931	17848	5716	-33	128	104.4	101.05	101.57	NSI	0.0	0.1
SKVGC054	8931	17844	5719	19	131	137.7	101.25	101.56	0.3	0.0	0.1
SKVGC069	8874	17853	5650	-4	58	121.1	101.85	102.28	0.4	8.2	0.3
SKVGC069	8874	17853	5650	-4	58	121.1			NSI		

		RA	LEIGH SIG		IT INTERSI	ECTIONS -	SKINNER	S AND R	٨V		
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
SKVGC070	8873	17852	5650	-4	81	131.6	()	()	NSI		()
SKVGC074	8873	17853	5649	-29	65	105.2			NSI		
SKVGC075	8873	17851	5649	-31	97	117.3			NSI		
SKVGC101	8972	17932	5856	-17	79	105.1	89.00	90.75	1.8	2.8	1.4
SKVGC103	8972	17932	5856	-27	67	110.3	99.05	99.30	0.3	0.5	0.2
SKVGC110	9031	17969	5921	-26	88	90.1	54.28	54.64	0.4	73.8	0.4
SKVGC110	9031	17969	5921	-26	88	90.1	70.00	70.80	0.8	59.6	0.8
SKVGC114	9031	17969	5922	11	71	110.9	92.95	93.90	1.0	241.4	0.7
SKVGC115	9031	17969	5922	12	89	99.0	83.34	84.14	0.8	37.8	0.6
SKVGC116	9031	17968	5923	11	107	101.5	82.29	82.51	0.2	89.3	0.2
SKVGC124	9066	18116	5941	-37	101	47.1			NSI		
SKVGC125	9064	18123	5941	-37	72	42.0	31.59	31.79	0.2	30.2	0.2
SKVGC126	9064	18123	5942	-62	52	51.0	40.92	41.15	0.2	3.3	0.1
SKVGC127	9064	18123	5942	-76	31	65.0	50.47	50.77	0.3	2.9	0.1
SKVGC129	9029	18064	5874	-20	22	77.9			NSI		
SKVGC130	9029	18064	5875	-3	28	79.7	64.80	65.20	0.4	1.3	0.1
SKVGC131	9029	18064	5875	-3	41	60.1	48.68	49.00	0.3	1.6	0.2
SKVGC132	9029	18063	5874	-28	36	57.0			NSI		
SKVGC136	9083	18109	5944	24	106	32.7	22.96	23.26	0.3	1400.0	0.2
SKVGC137	9061	18128	5944	20	107	61.6	49.35	49.57	0.2	9.7	0.1
SKVGC138	9061	18128	5944	5	36	86.9			NSI		
SKVGC139	9061	18129	5942	-22	28	83.7	70.48	70.69	0.2	27.5	0.1
SKVGC141	9031	17969	5922	-1	66	102.2	65.33	65.76	0.4	0.0	0.3
SKVGC141	9031	17969	5922	-1	66	102.2	87.18	87.96	0.8	17.0	0.7
SKVGC142	9031	17969	5922	-3	79	84.0	61.70	62.00	0.3	0.0	0.3
SKVGC142	9031	17969	5922	-3	79	84.0	77.22	78.18	1.0	16.1	0.9
SKVGC143	9031	17968	5922	-3	96	102.1	73.00	74.12	1.1	3.4	1.0
SKVGC145	9044	18065	5908	-21	148	108.2	63.92	64.17	0.3	119.0	0.1
SKVGC146	9044	18065	5908	-9	151	90.3	77.33	77.82	0.5	9.4	0.3
SKVGC148	9068	17990	5877	47	81	77.1	65.40	65.80	0.4	12.4	0.3
SKVGC150	9068	17990	5876	26	66	108.0	40.30	41.15	0.9	67.2	0.6
SKVGC151	9068	17990	5877	35	78	104.0	43.30	43.80	0.5	85.0	0.3
SKVGC151	9068	17990	5877	35	78	104.0	46.00	46.45	0.5	25.3	0.3
SKVGC152	9068	17990	5877	44	69	94.4	52.57	52.89	0.3	10.6	0.1
SKVGC153	9068	17990	5877	48	84	68.2	67.10	68.20	1.1	45.1	0.4
SKVGC156	9031	17969	5924	16	63	126.0	107.08	107.55	0.3	15.3	0.2
SKVGC157	9031	17968	5923	20	80	115.0	96.85	97.05	0.2	75.0	0.2
SKVGC160	9089	18076	5912	29	117	65.7	48.25	48.45	0.2	65.5	0.1
SKVGC161	9088	18075	5914	48	86	90.0	87.00	88.75	1.8	20.2	0.7

	SELECTED HISTORIC INTERCEPTS - RALEIGH BELOW CURRENT WORKINGS										
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip (degrees)	Azimuth (degrees, Mine Grid)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
RURD199	8747	18148	5658	-12	57	300.0	280.39	281.05	0.7	83.1	0.6
RURD159	8747	18149	5658	-22	56	263.2	250.74	251.16	0.4	22.4	0.4
RURD197	8747	18148	5659	-15	50	314.2	296.80	297.75	0.9	60.3	0.8
RURD204	8747	18150	5658	-20	39	395.8	358.70	359.30	0.6	32.1	0.4
RURD206	8744	18150	5658	-27	41	356.8	346.11	346.80	0.7	41.4	0.5
RURD207	8744	18150	5658	-34	43	350.8	339.00	340.00	1.0	70.5	0.8
RURD111	8746	18149	5658	-29	50	314.5	295.93	296.16	0.2	22.7	0.2

		PEGASUS	/FALCON	N/PODE S	IGNIFICA	NT INTER	SECTION	S (Surfa	ce Drill)		
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
FLDD15010	332119	6599099	6343	-63	53	366.0			NSI		
FLRC15001	332476	6598408	343	-65	66	258.0	127.0	128.0	1.0	3.0	1.0
FLRC15001	332476	6598408	343	-65	66	258.0	154.0	155.0	1.0	4.5	1.0
FLRC15002	332500	6598501	347	-65	60	174.0			NSI		
FLRC15003	332403	6598536	347	-66	63	318.0	182.0	182.0	1.0	1.3	
FLRC15004	332434	6598628	346	-66	55	219.0	69.0	72.0	3.0	1.9	3.0
FLRC15007	332119	6598993	346	-65	60	198.0	175.0	180.0	5.0	2.0	3.8
FLRC15008	332055	6599225	347	-65	60	180.0	33.0	67.0	34.0	0.4	
FLRC15009	331917	6599402	343	-65	60	132.0			NSI		
PGDD15019	332549	6598236	348	-62	56	742.0	135.0	136.0	1.0	5.3	0.5
PGDD15019	332549	6598236	348	-62	56	742.0	140.0	142.3	2.3	7.3	1.5
PGDD15019	332549	6598236	348	-62	56	742.0	372.0	375.0	3.0	2.5	2.8
PGDD15019	332549	6598236	348	-62	56	742.0	617.0	618.0	1.0	9.2	0.8
PGDD15019	332549	6598236	348	-62	56	742.0	625.0	626.0	1.0	6.0	0.5
PGDD15019	332549	6598236	348	-62	56	742.0	697.0	699.0	2.0	2.7	1.5
PGDD15020	332619	6598299	348	-64	60	41.9	22.0	26.2	4.2	1.4	3.0
PGDD15020	332619	6598299	348	-64	60	41.9	34.4	35.1	0.7	9.7	0.4
PGDD15021	332736	6598279	343	-66	54	492.0	220.7	221.3	0.6	2.4	0.6
PGDD15021	332736	6598279	343	-66	54	492.0	223.0	227.6	4.6	1.8	4.6
PGDD15021	332733	6598277	347	-66	57	492.0	408.7	409.8	1.1	10.2	1.0
PGDD15021	332733	6598277	347	-66	54	492.0	471.0	490.0	19.6	4.4	13.0
PGDD15021	332733	6598277	347	-66	54	492.0	471.0	479.0	8.0	7.0	6.0

		PEGASUS	FALCON	N/PODE S	IGNIFICA		SECTION	S (Surfa	ce Drill)		
Drill Hole #	Easting (MGA)	Northing (MGA)	Collar RL (MGA)	Dip (degrees)	Azimuth (degrees, MGA)	End depth (m)	From (m)	To (m)	Downhole Intersection (m)	Au (gpt) uncut	Est True Thickness (m)
# PGDD15022	332659	6598350	349	-62	87	531.1	101.5	102.5	1.0	2.0	0.6
PGDD15022	332659	6598350	349	-62	63	531.2	184.0	185.2	1.0	4.3	0.8
PGDD15022	332659	6598350	349	-62	63	531.2	247.7	249.0	1.2	7.6	1.2
PGDD15022	332659	6598350	349	-62	63	531.2	412.2	412.5	0.3	30.9	0.2
PGDD15022	332659	6598350	349	-62	63	531.2	447.5	447.7	0.2	15.2	0.2
PGDD15022	332659	6598350	349	-62	63	531.2	450.2	450.5	0.3	34.2	0.2
PGDD15022	332659	6598350	349	-62	63	531.2	466.0	473.1	7.1	2.5	5.3
PGDD15023	332744	6598364	340	-65	62	420.5	191.6	193.4	1.8	3.6	1.6
PGDD15023	332744	6598364	340	-65	62	420.5	395.0	395.5	0.5	4.8	0.4
PGDD15023	332744	6598364	340	-65	62	420.5	403.0	406.1	3.1	0.2	2.3
PGDD15024	332604	6598229	345	-65	49	375.0	86.5	91.5	5.1	17.4	4.0
PGDD15024	Including	0070227	0.10			375.0	91.0	92.0	0.5	87.4	0.4
PGDD15024	332604	6598229	345	-65	49	375.0	322.0	325.0	3.0	5.3	2.3
PGDD15026	332685	6598136	343	-71	58	294.2	61.9	67.8	5.9	1.6	5.0
PGDD15026	332685	6598136	343	-71	58	294.2	279.7	283.0	3.3	3.7	3.0
PGDD15026	Including						279.7	280.2	0.5	20.9	0.4
PGDD15027	332797	6598347	347	-63	89	375.0	167.0	172.0	5.0	6.5	4.5
PGDD15027	332797	6598347	347	-63	89	375.0	277.0	278.0	1.0	2.6	0.8
PGDD15027	332797	6598347	347	-63	89	375.0	282.0	283.0	1.0	2.4	0.8
PGDD15027	332797	6598347	347	-63	89	375.0	293.0	294.0	1.0	2.4	0.8
PGDD15027	332797	6598347	347	-62	60	375.0	314.0	319.0	5.0	1.5	3.8
PGDD15028	332586	6598126	345	-64	58	462.1	188.7	198.0	9.3	27.9	7.0
PGDD15028	Including						189.3	190.8	1.5	146.3	1.0
PGDD15028	Including						190.4	190.8	0.4	515.4	0.3
PGDD15028	332586	6598126	345	-64	58	462.1	401.8	408.7	6.9	3.5	5.2
PGDD15029	332524	6598155	345	-65	62	951.3	308.0	310.8	2.8	15.6	1.5
PGDD15029	Including						310.6	310.8	0.2	215.3	0.1
PGDD15029	332524	6598155	345	-65	62	951.3	589.9	597.2	7.2	2.9	6.5
PGDD15029	332524	6598155	345	-65	62	951.3	616.0	619.0	3.0	2.8	2.5
PGDD15029	332524	6598155	345	-65	62	951.3	909.2	910.5	1.3	2.5	1.0
PGDD15030	332620	6598299	348	-64	60	611.6	33.0	37.0	4.0	1.1	3.0
PGDD15030	332620	6598299	348	-64	60	611.6	294.0	295.0	1.0	11.0	0.8
PGDD15030	332620	6598299	348	-64	60	611.6	538.0	554.0	16.0	4.5	12.0
PGDD15030	332620	6598299	348	-64	60	611.6	566.0	594.4	28.4	5.5	21.3
PGRC15015	332717	6598499	345	-68	49	228.0	178.0	180.0	2.0	3.2	1.8
PGRC15017	332602	6598547	348	-65	89	270.0	203.0	204.0	1.0	1.9	0.9

		PEGAS	SUS/FALC	ON/PODE	SIGNIFIC	ANT INTE	RSECTION	IS (UG Dri	ill)		
Drill Hole #	Easting (Mine Grid)	Northing (Mine Grid)	Collar RL (Mine Grid)	Dip	Azimuth (degrees, Mine Grid)	End hole depth	From	To	Downhole Intersection	Au (gpt)	Est True Thickness
	9815	16991		(degrees) -39		(m)	(m)	(m)	(m)	uncut 19.9	(m) 0.9
PEGDD016	9815	16991	6141 6141	-39	15 18	190.6 183.1	165.8 153.3	169.2 155.1	3.4 1.8	19.9	0.9
PEGDD017 PEGDD018	9815	16990	6141	-33	18	209.9	168.5	155.1	5.6	9.1	1.6
PEGDD018	9815	16990	6141	-32	14	209.9	174.1	174.1	2.2	5.3	0.6
PEGDD018	9815	16990	6141	-32	14	209.9	174.1	178.9	0.5	29.5	0.8
PEGDD018	9815	16990	6141	-32	12	209.8	178.5	196.0	6.2	6.5	1.6
PEGDD012	9776	16836	6123	-27	12	161.0	51.8	52.6	0.8	6.9	0.6
PEGDD022	9776	16836	6123	-27	127	161.0	130.3	134.7	4.4	4.5	3.1
PEGDD022	9777	16837	6123	-27	106	119.2	104.8	106.4	1.5	18.4	1.4
PEGDD024	9776	16837	6123	-38	112	137.7	120.1	121.2	1.0	9.5	0.8
PEGDD024	9776	16838	6123	-36	85	115.3	120.1	121.2	NSI	7.5	0.0
PEGDD027	9776	16842	6123	-25	37	172.1	28.6	30.8	2.2	6.5	1.4
PEGDD027	9776	16842	6122	-25	37	172.1	34.0	35.5	1.5	4.4	0.9
PEGDD027	9776	16842	6122	-25	37	172.1	141.0	143.8	2.8	5.4	1.7
PEGDD028	9775	16841	6122	-36	39	158.0	6.7	10.9	4.2	47.0	2.6
PEGDD028	9775	16841	6122	-36	39	158.0	138.7	139.9	1.2	2.1	0.7
PEGDD031	9814	16991	6142	-10	12	231.1	189.8	191.6	1.8	9.9	0.5
PEGDD032	9776	16839	6123	-40	68	125.7	20.0	22.1	2.0	3.1	1.7
PEGDD032	9776	16839	6123	-40	68	125.7	28.7	30.4	1.6	13.1	1.4
PEGDD032	9776	16839	6123	-40	68	125.7	37.1	37.8	0.7	6.6	0.6
PEGDD032	9776	16839	6123	-40	68	125.7	110.0	111.4	1.4	19.9	1.2
PEGDD033	9815	16991	6142	-3	14	267.1	207.1	209.6	2.4	6.9	0.7
PEGDD034	9800	16863	6079	-40	46	111.0	88.1	88.8	0.7	11.1	0.5
PEGDD036	9800	16863	6079	-68	43	168.0	139.7	141.0	1.3	28.2	0.5
PEGDD037	9800	16863	6079	-32	62	90.0	55.5	56.2	0.7	16.4	0.6
PEGDD037	9799	16866	6079	-33	64	90.0	71.5	72.6	1.1	12.4	0.9
PEGDD038	9800	16863	6079	-54	62	120.0	43.3	44.0	0.7	7.1	0.4
PEGDD038	9800	16863	6079	-54	62	120.0	89.1	90.5	1.4	17.5	0.9
PEGDD039	9799	16866	6079	-66	62	141.0	111.5	112.2	0.7	51.7	0.2
PEGDD042	9800	16863	6079	-33	107	87.1	67.2	68.3	1.2	0.3	1.0
PEGDD043	9800	16863	6079	-50	114	114.1	74.6	75.3	0.7	2.4	0.5
PEGDD043	9800	16863	6079	-50	114	114.1	84.0	85.0	1.0	0.3	0.7
PEGDD044	9800	16862	6079	-16	127	98.0	77.9	80.7	2.8	19.8	2.1
PEGDD046	9799	16859	6079	-66	133	150.0	89.0	92.0	3.0	5.6	1.5
PEGDD046	9799	16859	6079	-66	133	150.0	98.3	98.7	0.4	9.8	0.2
PEGDD046	9799	16859	6079	-66	133	150.0	133.2	135.4	2.2	0.3	1.0
PEGDD047	9799	16859	6079	-34	137	153.0	87.6	88.5	0.9	5.2	0.5
PEGDD047	9799	16859	6079	-34	137	153.0	97.1	97.9	0.8	4.3	0.5
PEGDD047	9799	16859	6079	-34	137	153.0	97.9	98.8	0.9	5.0	0.5
PEGDD049	9799	16859	6079	-19	151	165.8	128.7	132.7	4.0	12.4	2.0

Drill Hole # PEGDD052 PEGDD053 PEGDD054 PEGDD055 PEGDD058 PEGDD058 PEGDD058 PEGDD060 PEGD060	Easting (Mine Grid) 9799 9755 9754	Northing (Mine Grid)	Collar RL (Mine		Azimuth	End hole			Downhole	Αυ	Est True
# PEGDD052 PEGDD054 PEGDD055 PEGDD058 PEGDD058 PEGDD058 PEGDD058 PEGDD058	(Mine Grid) 9799 9755	Grid)		Din							
# PEGDD052 PEGDD053 PEGDD054 PEGDD055 PEGDD058 PEGDD058 PEGDD060	9799 9755	Grid)			(degrees,	depth	From	To	Intersection	(gpt)	Thickness
PEGDD053 PEGDD054 PEGDD055 PEGDD058 PEGDD058 PEGDD060	9755	1 (050	Grid)	(degrees)	Mine Grid)	(m)	(m)	(m)	(m)	uncut	(m)
PEGDD054 PEGDD055 PEGDD058 PEGDD058 PEGDD060		16859	6079	-54	150	158.1	143.8	144.0	0.2	1.9	0.1
PEGDD055 PEGDD058 PEGDD058 PEGDD060	9754	16951	6066	-16	91	119.9	100.3	101.0	0.7	1.9	0.7
PEGDD058 PEGDD058 PEGDD060		16951	6066	-25	98	123.0	102.6	103.7	1.1	3.3	1.1
PEGDD058 PEGDD058 PEGDD060	9754	16951	6066	-36	96	130.0	108.0	108.3	0.3	2.2	0.3
PEGDD058 PEGDD060	9754	16951	6065	-58	92	165.0	124.3	125.4	1.0	2.5	0.7
PEGDD060	9754	16951	6065	-58	92	165.0	143.3	144.3	1.0	1.1	0.7
	9754	16951	6066	-45	78	144.0	110.3	110.6	0.3	65.9	0.2
	9754	16951	6066	-45	78	144.0	117.0	118.5	1.5	4.5	1.3
PEGDD062	9751	16954	6065	-27	72	128.1	109.6	110.2	0.6	40.8	0.6
PEGDD063	9752	16954	6065	-36	69	137.3	116.8	117.7	0.9	6.4	0.6
PEGDD066	9752	16954	6065	-56	74	168.0	145.8	147.0	1.2	1.1	0.9
PEGDD070	9692	16990	6058	1	30	330.0	275.8	276.5	0.7	18.7	0.5
PEGDD070	9692	16990	6058	1	30	330.0	288.4	289.4	1.0	6.9	0.5
PEGDD071	9692	16990	6058	-3	33	286.8	265.6	266.9	1.2	20.3	0.7
PEGDD072	9692	16990	6058	-6	28	345.0	290.5	291.8	1.3	31.0	0.8
PEGDD072	9692	16989	6057	-11	20	369.2	342.2	343.3	1.2	7.3	0.5
PEGDD077	9692	16990	6058	-17	29	290.0	273.3	274.3	1.0	10.8	0.6
PEGDD078	9692	16989	6058	-19	24	322.5	298.0	302.1	4.1	6.6	2.1
PEGDD080	9692	16989	6057	-25	15	438.4	155.0	155.8	0.8	3.4	0.2
PEGDD080	9692	16989	6057	-25	15	438.4	387.9	389.0	1.1	131.0	0.4
PEGDD082	9691	16989	6057	-41	32	291.0	277.8	278.4	0.7	13.5	0.4
PEGGC001	9888	16931	6172	0	270	12.0	277.0	2/0.1	NSI	10.0	0.1
PEGGC002A	9889	16931	6173	30	274	27.0	14.0	14.9	0.9	27.2	0.9
PEGGC003	9887	16943	6172	0	270	48.1	14.0	14.7	NSI	27.2	0.7
PEGGC004A	9887	16943	6172	30	270	45.0	25.8	27.2	1.4	5.4	1.3
PEGGC005	9886	16952	6172	0	270	38.0	20.0	27.2	NSI	5.4	1.0
PEGGC006	9887	16953	6173	30	270	33.0	30.4	31.5	1.1	2.4	1.0
PEGGC007	9886	16952	6172	0	292	42.2	00.1	01.0	NSI	2.1	1.0
PEGGC008	9887	16953	6173	22	293	41.8			NSI		
PEGGC009	9885	17000	6174	25	258	111.0	78.6	81.2	2.6	1.3	2.5
PEGGC009	9885	17000	6174	25	258	111.0	70.0	01.2	NSI	1.5	2.5
PEGGC010	9885	17000	6175	40	278	105.0	89.0	90.4	1.4	9.7	1.2
PEGDD101	9886	16991	6173	8	285	198.0	150.0	154.0	4.0	1.8	3.5
PEGDD102	9886	16991	6174	20	203	179.9	138.0	155.0	17.0	17.0	15.0
PEGDD102	9886	16992	6175	33	311	161.8	134.0	141.0	7.0	16.5	6.0
PEGDD104	Including	10/72	0175		011	101.0	140.0	141.0	1.0	103.0	0.0
PEGDD104	9883	17030	6173	-9	256	198.0	161.7	164.8	3.1	1.5	3.0
PEGDD106A	9883	17031	6174	5	260	149.9	116.0	118.0	2.0	4.3	1.5
PEGDD108A	9883	17030	6174	-1	265	179.1	149.7	150.3	0.6	5.7	0.6
PEGDD108	9883	17030	6173	-5	203	192.0	173.9	175.5	1.6	5.3	1.6
PEGDD109	9883	17031	6173	-13	257	240.0	165.0	165.3	0.3	187.9	0.2
PEGDD109	9883	17031	6173	-13	257	240.0	202.0	204.1	2.1	4.4	2.1
PEGDD110	9883	17031	6173	-2	586	190.0	169.0	169.7	0.7	5.9	0.6
PEGDD111	9883	17031	6173	10	282	179.9	151.4	153.8	2.4	4.3	2.3
PEGDD112	9883	17031	6173	-7	202	213.0	180.0	184.0	4.1	3.2	4.0
PEGDD112	9883	17031	6174	-/	278	183.0	150.9	153.0	2.1	6.1	1.9
PEGDD114	9883	17031	6173	-8	305	242.9	169.0	169.5	0.6	17.2	0.6
PEGDD114	9883	17031	6173	-8	305	242.9	174.0	207.7	33.7	17.2	30.0
PEGDD114	9883	17031	6173	-8	305	242.9	201.9	207.7	5.8	1.4	5.0
PEGDD114 PEGDD121	9884	17031	6173	-0 -5	313	242.9	181.0	184.0	3.0	0.1	3.0
PEGDD121 PEGDD121	9884	17026	6173	-5 -5	313	261.0	202.8	205.3	2.5	1.9	2.5
PEGDD121 PEGDD122	9884	17026	6173	-5	309	165.0	144.0	145.0	1.0	3.1	0.8
PEGDD122 PEGDD123	9884 9884	17026	6174	28	309	165.0	144.0	145.0	3.0	3.1	2.7
PEGDD123 PEGDD124	9884 9884	17026	6175	28	312	152.0	127.0	130.0	<u>3.0</u> 0.4	3.3 4.2	0.3
			6174		324				1.0	4.2 0.2	
PEGDD124 PEGDD125	9884 9884	17027	6174	23 8	324	170.5 201.0	154.0 148.0	155.0 162.5	1.0	0.2 5.2	0.8

JORC Code, 2012 Edition – Table 1 Report: Kundana Drill Results reported 6 April 2016

(Rubicon, Hornet, Pegasus, Falcon, Raleigh and Skinners Vein)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling was completed using a combination of Reverse Circulation (RC) and Diamond Drilling (DD). Sample intervals are defined by the geologist to honour geological boundaries. Diamond drill core was aligned, measured and then sampled by cutting the core in half longitudinally using an "Almonté" diamond saw. Cutting was along orientation lines which are retained in the tray or, where orientation lines are absent, along cutting lines marked on the pieced together core.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Diamond core was transferred to core trays for logging and sampling. Where significant changes in geology were encountered, the sample boundary was marked there Half core samples were nominated by the geologist from both NQ2 and HQ diamond core, with a minimum sample width of either 20cm (HQ) or 30cm (NQ2). RC samples were split using a rig-mounted cone splitter on 1m intervals to obtain a sample for assay. 4m Composite spear samples
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	were collected for most of each hole, with 1 m samples submitted for areas of known mineralisation or anomalism. The main assaying method employed by the company is normal fire assay with a 40 or 50g charge and AAS analysis for Au. All sampling data was entered onto logging sheets or tablet computer and entered into the central Acquire database. Some historic RC holes from surface and the pit were also used for resource estimation. These holes typically have 2m sample intervals.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Both RC and Diamond Drilling techniques were used at the K2 deposits. Diamond drill holes completed pre-2011 were predominantly NQ2 (50.5mm). All resource definition holes completed post 2011 were drilled using HQ (63.5mm) diameter core Where appropriate diamond core was orientated using a spear, Ballmark™, Ezimark™, or ACE multi electronic tool RC Drilling was completed using a 5.75" drill bit, downsized to 5.25" at depth.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC drilling contractors adjust their drilling approach to specific conditions to maximize sample recovery. Moisture content and sample recovery is recorded for each RC sample. No recovery issues were identified during 2015 RC drilling. Recovery was poor at the very beginning of each hole, as is normal for this type of drilling in overburden.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	For diamond drilling the contractors adjust their rate of drilling and method if recovery issues arise. All recovery is recorded by the drillers on core blocks. This is checked and compared to the measurements of the core by the geological team. Any issues are communicated back to the drilling contractor.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Recovery was generally excellent for diamond core and no relationship between grade and recovery was observed. Some core loss was observed in the Skinners Vein, this has led to an under call on mineralisation. For RC drilling, pre-collars were ended before known zones of mineralisation and recovery was very good through any anomalous zones, so no issues occurred.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All diamond core was inspected by geologists; lithology, mineralisation, structure, alteration, veining and specific gravity were recorded. Quantitative measures were also recorded where possible such as structural measurements, intensity of alteration, percentage of mineralisation, thickness of veins and veins per metre. Geotechnical measurements on diamond core include RQD, Recovery, and Fracture Frequency. Photographs are taken of each core tray when wet. All mineralised intersections are logged and sampled
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	All logging is quantitative where possible and qualitative elsewhere. A photograph is taken of every core tray. Visual estimates are made for mineralisation percentages for core.
	The total length and percentage of the relevant intersections logged.	RC sample chips are logged in 1m intervals. For the entire length of each hole. Regolith, Lithology, alteration, veining and mineralisation are all recorded.
	If core, whether cut or sawn and whether quarter, half or all core taken.	All Diamond core is cut and half the core is taken for sampling. The remaining half is stored for later use.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All RC samples are split using a rig-mounted cone splitter to collect a 1m sample 3-4kg in size. These samples were submitted to the lab from any zones approaching known mineralisation and from any areas identified as having anomalous gold. Outside of mineralised zones spear samples were taken over a 4m interval for composite sampling.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation is considered appropriate
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates were taken for RC samples at a rate of 1 in 20
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate / second-half sampling.	Quarter core sampling is often undertaken as a check
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Grind checks are performed at both the crushing stage(3mm) and pulverising stage (75µm), requiring 90% of material to pass through the relevant size.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All samples are prepared and assayed at commercial laboratories. No Northern Star personnel are involved in the preparation or analysis procedures. Preparation involves crushing/pulverising the entire sample to 95% minus 75µm, splitting off 200g, and preparing a 50g charge for fire assay. Kanowna Belle samples are tested by fire assay with an atomic absorption finish (FA/AA) for Au, LECO for S and inductively coupled plasma (ICP) for As and other multi-elements.
		Monthly QAQC reports are prepared to check for any bias or trends with conclusions discussed with the laboratory management.
		Holes that do not pass QAQC are not used for resource estimation.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory	Sampling and assaying QAQC procedures include:
	checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	- Periodical resubmission of samples (umpires) to primary and secondary laboratories in Kalgoorlie (minimum >5%).
	established.	- Submittal of independent certified reference material
		- Review of internal laboratory quality control standards
		- Review of laboratory (analytical) duplicates
		- Sieve testing to check grind size
		- Sample recovery checks.
		- Unannounced laboratory inspections
		Standard control samples and blanks are inserted into the sample stream at a ratio of 1:20. The samples are purchased from certified commercial supplier, encompassing a range of Au values. The standard control samples are changed on a three month rotation. The results are reviewed on a per batch basis and batches of samples are re-analysed if the result is greater than three standard deviations from the expected result. Any result outside of two standard deviations is flagged for investigation by a geologist and may also be re-assayed.
		Primary laboratory Bureau Veritas meets ISO 9001:2000.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	All significant intersections are verified by another Northern Star geologist during the drill hole validation process, and later by a Competent person to be signed off
assaying	The use of twinned holes.	No Twinned holes were drilled for this data set
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Geological logging was captured using excel templates. Both a hardcopy and electronic copy of these are stored, as well as being loaded in to the database using automatic acquire loaders. Assay files are received in csv format and loaded directly into the database by the Database administrator (DBA). A geologist then checks that the results have inserted correctly. Hardcopy and electronic copies of these are stored.
	Discuss any adjustment to assay data.	No adjustments are made to this assay data.
Location of data	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	A planned hole is pegged using a Differential GPS by the field assistants
points		Underground diamond holes are picked up by mine surveyors
		During drilling single-shot surveys are every 30m to ensure the hole remains close to design. This is performed using the Reflex Ez-Trac system. Upon hole completion, a Gyroscopic survey is conducted by ABIMS, taking readings every 5m for improved accuracy. This is done in true north.
	Specification of the grid system used.	The final collar is picked up after hole completion by Differential GPS in the MGA 94_51 grid.
	1	

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Quality topographic control has been achieved through Lidar data and survey pickups of holes over the last 15 years.
Data spacing and	Data spacing for reporting of Exploration Results.	Drill hole spacing across each area varies though spacing was typically 40m x 40m or less.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing is considered appropriate
	Whether sample compositing has been applied.	No compositing has been applied to these exploration results, although composite intersections are reported.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of the structures in the Kundana camp dip steeply (80°) to WSW. The Pode structure has a much shallower dip in a similar direction, approximately 60°. To target these orientations the drill hole dips of 60-70° towards ~060° achieve high angle intersections on all structures.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is considered to have been introduced by the drilling orientation
Sample security	The measures taken to ensure sample security.	All core is kept within the site perimeter fence on the Mining Lease 16/309. Samples are dispatched and/or collected by an offsite delivery service on a regular basis. Each sample batch is accompanied with a
		- Job number
		- Number of Samples
		- Sample Numbers (including standards and duplicates)
		- Required analytical methods
		- A job priority rating
		A Chain of Custody is demonstrated by both Company and Bureau Veritas in the delivery and receipt of sample materials.
		Any damage to or loss of samples within each batch (e.g., total loss, spillage or obvious contamination), must also be reported to the Company in the form of a list of samples affected and detailing the nature of the problem(s).
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits or reviews have been conducted recently on sampling techniques.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Hornet, Rubicon and Pegasus project are held by The East Kundana Joint Venture (EKJV). The EKJV is majority owned and managed by Northern Star Resources Limited (51%). The minority holding in the EKJV is held by Tribune Resources Ltd (36.75%) and Rand Mining Ltd (12.25%).
		The Hornet, Rubicon, Pegasus and Falcon deposits are hosted on M16/309
		The tenement on which the Hornet, Rubicon, Pegasus and Falcon deposits are hosted (M16/309) is subject to two royalty agreements; however neither of these is applicable to the actual Pegasus deposit. The agreements that are on M16/309 but not relevant to the Pegasus project are the Kundana- Hornet Central Royalty and the Kundana Pope John Agreement No. 2602-13.
		The Raleigh and Skinners deposits are located on M15/993. A small portion of the Raleigh orebody (Raleigh North) crosses on to M16/157
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments exist and the tenements are in good standing
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The first reference to the mineralisation style encountered at the Pegasus project was the mines department report on the area produced by Dr. I. Martin (1987). He reviewed work completed in 1983 – 1984 by a company called Southern Resources, who identified two geochemical anomalies, creatively named Kundana #1 and Kundana #2. The Kundana #2 prospect was subdivided into a further two prospects, dubbed K2 and K2A.
		Between 1987 and 1997, limited work was completed.
		Between 1997 and 2006 Tern Resources (subsequently Rand Mining and Tribune Resources), and Gilt-edged mining focused on shallow open pit potential which was not considered viable.
		In 2011, Pegasus was highlighted by an operational review team and follow-up drilling was planned through 2012.

Criteria	JORC Code explanation	Commentary
		This report is concerned solely with 2015-16 drilling that led on from this period.
		Raleigh was discovered by Goldfields Limited in the early 2000's
Geology	Deposit type, geological setting and style of mineralisation.	The Kundana camp is situated within the Norseman-Wiluna Greenstone Belt, in an area dominated by the Zuleika shear zone, which separates the Coolgardie domain from the Ora Banda domain.
		K2-style mineralisation (Pegasus, Rubicon, and Hornet) consists of narrow vein deposits hosted by shear zones located along steeply dipping overturned lithological contacts. The K2 structure is present along the contact between a black shale unit (Centenary shale and intermediate volcanoclastics (Spargoville formation).
		The southern extent of Hornet is truncated by the Mary Fault. Frog Legs deposit (owned by La Mancha) is the continuation of the K2 system
		Minor mineralisation, termed K2B, also occurs further west, on the contact between the Victorious basalt and Bent Tree Basalt (bott part of the regional upper Basalt Sequence).
		A 60° W dipping fault, offsets this contact and exists as a zone of vein-filled brecciated material hosting the Pode-style mineralisation
		Raleigh is a laminated vein hosted on the Strzelecki structure, which is a discrete fault zone within the broader Zuleika Shear. Skinner, vein is a near parallel splay in the hangingwall of the Raleigh main vein.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	All holes relevant to this reporting period are detailed in the appendix
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole 	
	 down hole length and interception depth 	
	 hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Some minor lower grade intersections, that are not part of the reported mineralised system, are not reported. This information is no material.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay results have been length weighted to provide an intersection width. A maximum of 2m of barren material between mineralised samples has been permitted in the calculation of these widths.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No assay results have been top-cut for the purpose of this report. A lower cut-off of 1gpt has been used to identify significant results, although lower results are included where a known ore zone has been intercepted, and the entire intercept is low grade.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used for the reporting of these exploration results
Relationship between mineralisation widths	These relationships are particularly important in the reporting of Exploration Results.	True widths have been calculated for intersections of the known ore zones, based on existing knowledge of the nature of these structures. For unknown structures, only the downhole length is reported.
and intercept lengths	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Both the downhole width and true width have been clearly specified when used.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	For unknown structures, only the downhole length is reported.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Appropriate plans and section have been included in the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Both high and low grades have been reported accurately, clearly identified with the drill hole attributes and 'From' and 'To' depths
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No further relevant work has been carried out

Criteria	JORC Code explanation	Commentary
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work will continue in 2016 to extend the indicated resource deeper by additional drilling and identify new mineralised shoots on the K2 structure. In part this will be from a proposed 2km drill drive stretching from Hornet to Pegasus
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Part of the announcement