

Corporate Details:

11th May 2016

ASX code: SAR

Corporate Structure:

Ordinary shares on issue: 800.8m

Unvested employee performance rights: 20.2m

Market Capitalisation: A\$921m (share price A\$1.15)

Cash & Bullion (31 March): A\$34.3m

Debt: Nil

Directors:

Mr Geoff Clifford Non-Executive Chairman

Mr Raleigh Finlayson Managing Director

Mr Mark Connelly Non-Executive

Mr Martin Reed Non-Executive

Ms Samantha Tough Non-Executive

Substantial Shareholders:

Van Eck 8.6%

Wroxby 8.2%

Paradice Investment Management 6.6%

Karara Capital 6.1%

Registered Office:

Level 4 89 St Georges Terrace Perth WA 6000 Telephone: +61 8 6229 9100 Facsimile: +61 8 6229 9199

For further details contact:

Troy Irvin Telephone +61 8 6229 9100 info@saracen.com.au SARACEN MINERAL HOLDINGS LIMITED

ACN: 009 215 347

Ramp-up of Deep South underpins Carosue Dam production outlook

Carosue Dam set to meet FY16 and FY17 outlook of ~150-160,000ozpa as part of total group production of ~300,000ozpa at AISC of <A\$1075/oz

Key Points

- Stoping now underway at the Deep South underground mine at Carosue Dam, with production on track to ramp-up to ~60kozpa from FY17
- The addition of Deep South improves Carosue Dam's operating profile, resulting in a lower risk mine plan
- Positive results returned from recent grade control drilling at Deep South with further grade control drilling planned next quarter. Results include:
 - 4.5m @ 14.7g/t
 - 12.4m @ 7.2g/t
 - 15.5m @ 5.9g/t
- Deep South remains open along strike and at depth with extensional drilling planned in FY17 (including follow-up work on a previous intersection of 18m @ 7.4g/t, 40m below the base of the current Reserve)
- Deep South has now become the base-load feed for Carosue Dam's Northern Region, with relatively modest contributions of ~15koz in each of FY17 and FY18 expected from Red October (in line with the Carosue Dam five-year outlook)
- Ramp-up of Deep South enables Saracen to focus on exploration at the high-grade Red October mine, where exploration opportunities include vertical and lateral extensions and repetitions of the deposit
- Drilling is currently underway at Red October, with recent results reinforcing the deposit's high-grade credentials:
 - 0.4m @ 141g/t
 - 2.0m @ 91g/t

Saracen Mineral Holdings (**ASX: SAR**) is pleased to advise that the Carosue Dam project in WA is well on track to meet its production and cost outlook with stoping now underway at the Deep South underground mine.

The Deep South ramp-up improves Carosue Dam's operating profile, resulting in a lower risk mine plan. It also facilitates a reinvigorated exploration effort at the high grade Red October mine where drilling is underway targeting potential extensions and repetitions.

Carosue Dam Production Update

Saracen is pleased to advise that its Carosue Dam project in WA is well on track to meet production and cost outlook (refer to ASX announcement dated 27th October 2015 – "Robust Five-Year Outlook – Revised") with stoping now underway at the 100 per cent-owned Deep South underground mine.

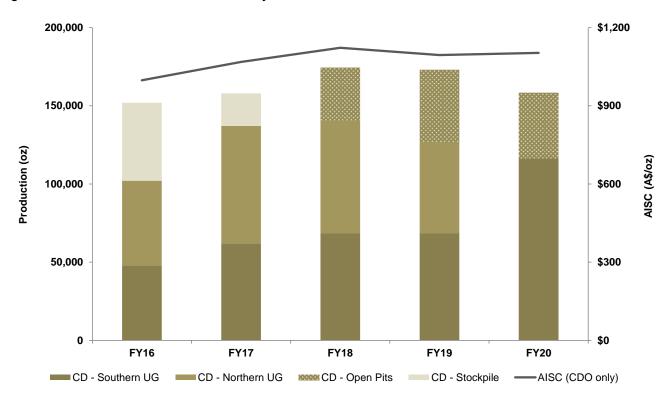


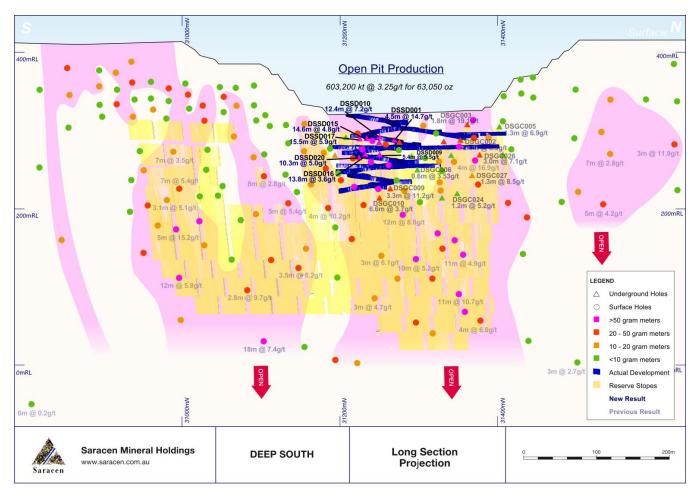
Figure 1 – Carosue Dam on track to meet five-year outlook

The Carosue Dam five-year outlook includes "CD - Northern UG" contributions of ~75koz in FY17 and FY18 (Figure 1). Deep South's contribution comprises ~60kozpa from FY17, leaving a modest ~15koz in each of FY17 and FY18 from Red October (as per the Carosue Dam five-year outlook).

The upside case for Red October includes exploration opportunities with drilling underway to test for extensions (vertical and lateral) and repetitions. Key targets include:

- Lower Marlin Lode
- Northern Anchor Lodes
- Lionfish Lode
- Red October repeats

The above targets are detailed in the Red October Drilling Update on page 5.


Deep South Drilling Update

As activities rapidly progress at Deep South, grade control continues to de-risk the short term mine plan.

During April 2016, the opportunity was taken to drill some short, close spaced, grade control holes from the 2275 Butler Ore Drive South. These holes were drilled above and below the 2275 Scarlett Ore Drive South.

Results closely resemble the historical data and confirmed the continuity of the mineralisation. Intersections included:-

- 4.5m @ 14.7g/t
- 12.4m @ 7.2g/t
- 15.5m @ 5.9g/t

Figure 2 – Deep South Long Section illustrating Grade Control results

Routine face sampling of the lodes during development has also highlighted the continuous nature of the mineralisation (Figure 3).

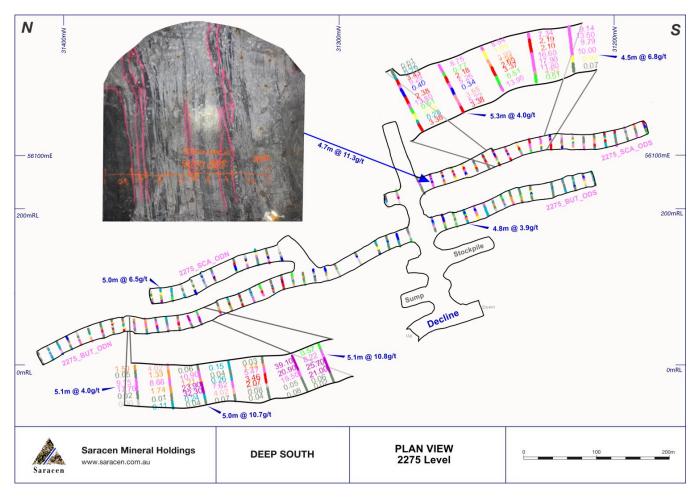


Figure 3 – Deep South Plan view of the 2275 Level with sampled faces

Further grade control drilling is planned in the September quarter 2016.

Resource extension and infill drilling is also planned in FY17 following the development of two hangingwall drill positions.

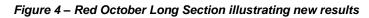
The deepest drilling at Deep South is only ~400m below surface (Figure 2) and remains open at depth (highlighted by high grade results including 18m @ 7.4g/t) and also along strike.

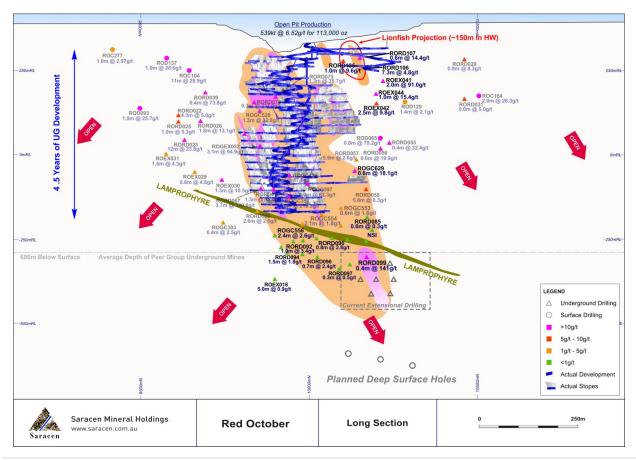
On a regional scale, the mineralised structure remains open over several kilometres along strike. Surface exploration programs will be undertaken in the future to test for high grade mineralisation proximal to the Deep South mine infrastructure. Mexico, located less than 400m to the south of the mine and which has a high grade intercept of 5.7m @ 12.2g/t less than 300m below surface, is one of several enticing prospects in the region.

Red October Drilling Update

Lower Marlin Lode

Over the last two months, drilling at Red October has focused on down plunge extensions of the Marlin Lode (the main production source over the last 18 months), and extensional grade control targeting near term opportunities. This program is nearing completion and the first results have been returned.

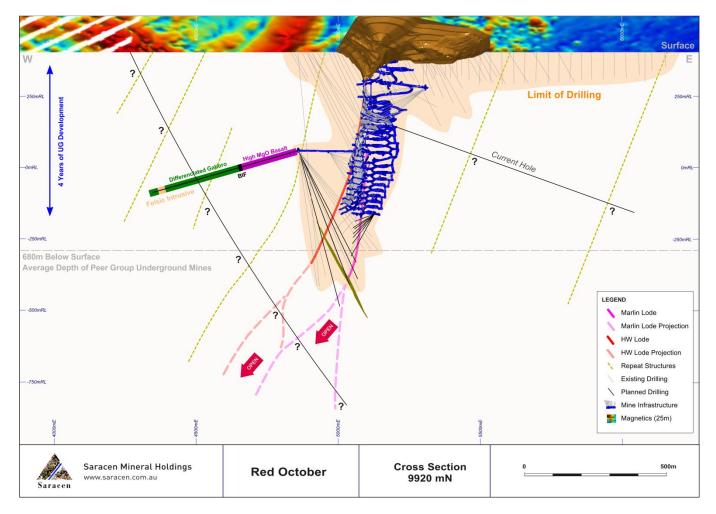

The presence of a Lamprophyre Dyke has resulted in a flattening of the sub-vertical Marlin Lode and a reduction in grade tenor. Encouragingly, the deepest and most northern hole (RORD099) returned a **high grade result (0.4m @ 141g/t)** where the Marlin Lode appears to be returning to a steeper orientation. The lower Marlin Lode is a focus for follow up drilling over the coming months immediately below that intercept. In addition, a surface drilling program will commence in July 2016 to test the down dip continuity of the Marlin Lode ~1km below surface (refer to Figures 4 and 5).


Northern Anchor Lodes

Extensional grade control drilling in the upper areas has confirmed previously defined domains which will be a focus for economic evaluation in FY17. This will include follow up holes into the Northern Anchor Lodes which have returned recent results including **2.0m** @ **91.0g/t** and **1m** @ **15.4g/t**.

Lionfish Lode

Drilling has discovered a new lode called the "Lionfish". This lode is located on a hyaloclastic flow top breccia in the high MgO basalt sequence ~150m into the hangingwall. The lode is characterised by moderate to strongly sheared basalt with gold-related (biotite-albite-sericite-carbonate) alteration. Results of **0.6m @ 14.4g/t** and **1.0m @ 9.6g/t** demand further investigation.


Red October repeats

Two underground stratigraphic holes are being drilled to test for repeat lode positions within the corridor of mineralised structures in the Red October district.

The first of the stratigraphic holes has been completed and whilst the hole did not intersect any significant mineralisation, key stratigraphic boundaries similar to those mineralised in the mine were identified along with a number of altered shear zones (refer Figure 5).

Furthermore, that hole intersected a zone of highly altered felsic intrusions near the end of the hole. The discovery of these altered intrusions, which have not previously been encountered in the mine, has provided further support for the targeting strategy exploring for additional ore positions close to the mine infrastructure.

Figure 5 – Red October – Cross Section describing stratigraphic holes and deep surface exploration targeting

Following the application of various exploration targeting techniques (including soil sampling, ground magnetics, underground and surface structural mapping), an aggressive surface exploration drilling program has been designed. In addition to testing the extents of the lower Marlin Lode, this program will test for potential repeats of the Red October shear zone in the hanging wall stratigraphy. This drilling is planned to commence in July 2016 (refer Figure 5).

Saracen's Managing Director Raleigh Finlayson is pleased to reaffirm Carosue Dam's five-year outlook with the Deep South ramp-up to ~60kozpa from FY17.

"With average ore widths in excess of four metres, grades in excess of four grams per tonne, and a strike length of up to five hundred metres, Deep South is a shallow, high-margin underground mine which immediately enhances Carosue Dam's production profile," he said.

"The reinvigoration of exploration at Red October is a one of the component of Saracen's aggressive organic growth campaign over the coming months."

For further information please contact:

Investors: Troy Irvin Corporate Development Officer Email: info@saracen.com.au www.saracen.com.au <u>Media Enquiries</u>: Read Corporate Paul Armstrong/Nicholas Read Contact: (08) 9388 1474 Email: info@readcorporate.com

Competent Person Statements

The information in the report to which this statement is attached that relates to Exploration Results and Mineral Resources related to Gold is based upon information compiled by Mr Daniel Howe, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Daniel Howe is a full-time employee of the company. Daniel Howe has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Daniel Howe consents to the inclusion in the report of matters based on his information in the form and context in which it appears.

The information on Deep South and Red October Mineral Resources and Ore Reserves has been extracted from the ASX announcement titled "2015 Mineral Resources and Ore Reserves" dated 15 October 2015. The report is available to view on the ASX Website at <u>www.asx.com.au</u> and on the Company's website at <u>www.saracen.com.au</u>. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources and Ore Reserves, that all market assumptions and technical assumptions underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Summary of Drilling Results - Red October

RED OCTOBER	DRILLING MAY 2	016							Downhole	
Hole	Easting	Northing	RL	Depth	Azimuth	Dip	From (n	ı) To (m)	Width (m)	Grade g/
ROEX040	442854.516	6768000.78	45.822	531	347.22	-9.01	130	5 131.5	1	
							and 14			
ROEX041	443249.86	6767965.845	267.615	168	261.31	-38.71	79.0			91.0
							and 88.1			3.7
ROEX042	443249.832	6767965.843	267.465	206	260.49	-58.5	43			3.1
NOLX042	+152+5.052	0/0/303.043	207.405	200	200.45	50.5	and 140.			9.8
ROEX043	443249.923	6767965.745	267.731	213.1	231.84	-/11 76	no significant result		2.43	5.0
ROEX043	443249.935	6767965.629		213.1	203.38	-55.33	115.5		1.00	15.4
ROEX044	443249.933	6767965.584		196			no significant result		1.00	15.4
		6767735.812				-30.375		5		
ROEX046	442982.024		139.36	720		26.07	results pending	_		
ROGC622	443027.561	6767816.067		108	341.17		no significant result			
ROGC623	443027.496	6767815.979		123	337.77		no significant result			
ROGC624	443029.392	6767816.465		146.5	18		no significant result			
ROGC625	442961.404	6767817.532		97.07	297.63		no significant result			
ROGC626	442961.485	6767817.712		77	338.95	-25.92	65.2			
ROGC627	442972.823	6767850.828		33		-28.29	21.0			1.3
ROGC628	442962.621	6767853.174		30		-38.1	15.6			
ROGC629	442871.691	6768005.358	46.15	306	105.31	-16.81	277.5			18.1
							and 294.2	296.9	2.62	3.0
ROGC630	442871.743	6768005.43	46.138	304.6	100.09	-15.68	19	9 200.73	1.73	1.6
ROGC631	443167.939	6767993.942	257.6	62.5	43.69	34.29	no significant result	s		
ROGC632	443167.939	6767993.942	257.6	72	51.69	25.5	19.4	5 19.95	0.50	1.6
							and 25.5	5 26.35	0.80	1.1
							and 4	40.75	0.75	1.9
							and 49.4	5 50.2	0.75	2.9
							and 61.2	62.25	1.00	
ROGC633	443167.798	6767993.94	256.7	48	29.49	16.9	no significant result			
ROGC634	443167.798	6767993.94	256.7	63		-13.7	37		1.15	1.4
		0,0,000101	20017		.0.00	10.7	and 54.7			
							and 61			8.0
ROGC635	443250.08	6767965.713	267.7	114.2	239.63	-21 0/	results pending	.5 02	0.70	0.0
ROGC636	443250.08	6767965.713	267.7	99.2	235.05	-25.59		1 42.41	1.41	4.7
1000030	443230.08	0/0/905./15	207.7	33.2	240	-23.39	and 87.8			10.8
000007	442250.08	C7C70CE 712	267.7	102.44	251.00	14.0		00.75	0.95	10.0
ROGC637 ROGC638	443250.08 443250.08	6767965.713 6767965.713	267.7 267.7	102.44 90.2			results pending results pending			
ROGC639	443250.08	6767965.713	267.7	90.4			results pending	0 70 54	0.05	
ROGC640	443260.601	6767973.997	269.47	102		20.43				
ROGC641	443260.601	6767973.997	269.47	90	312.72	23.46				
							and 71.9			
							and 75		0.60	78.1
ROGC644	442871.686		46.037	306			no significant result	S		
ROGC645	442997.488	6767798.927	240.5	60.1			results pending			
ROGC646	442997.488		240.5	83.8			results pending	_		
ROGC647	442997.488	6767798.927	240.5	80.7	64.49	10.7	results pending			
ROGC648	443027.438	6767815.898	-112.73	111	355.01	-33.62	97.9			1.5
ROGC649	443027.438	6767815.898	-112.73	134	2.29	-38.42	118.9	121.18	2.26	2.4
							and 125.6	126.3	0.62	1.9
							and 126.9	6 128.03	1.07	1.8
ROGC650	443027.438	6767815.898	-112.73	120	7.33	-31.28	results pending			
ROGC651	443108.136	6767934.201	258.7	42.18	293.49	14.3	5.1	.6 7.11	1.95	1.2
							and 11.6			
								29 29.78		
							and 31.4			
ROGC652	443108.136	6767934.201	258.7	36	312.59	17.2	8.0			
		0707334.201	230.7		512.55	17.2	and 18.3			
ROGC653	443118.08	6767948.747	258.27	30	285.99	21 ∩⊏	no significant result		1.00	1.5
ROGC654	443118.08	6767948.747	258.27	24	311.39	29.58	no significant result	3		

RED OCTOBER	DRILLING MAY 20								Downhole	
Hole	Easting I	Northing	RL	Depth	Azimuth	Dip	From (m)	To (m)	Width (m)	Grade g/
ROGC655	443164.977	6767995.01	258.37	32.8	323.59	21.7	results pending			
ROGC656	443166.713	6767994.716	258.36	35.8	4.69	22.3	results pending			
ROGC657	443166.713	6767994.716	258.36	44.8	23.29	44.5	results pending			
RORD085	443029.495	6767816.323	-112.45	206	27.4	-17.8	76.92	77.65	0.73	2.1
							and 86.45	88.22	1.77	
RORD086	443029.509	6767816.28	-112.52	275.9	29.7	-27.47			1.73	
RORD087	443029.451	6767816.314	-112.59	185	20.81	-34.84			1.73	
NOND00/	443023.431	0/0/010.014	112.35	105	20.01	54.04	and 147.26		1.35	
RORD088	442991.133	6767770.689	-146.1	324	30.56	22.60	no significant results	140.42	1.10	2.0
	442991.01		-146.06		23.68	-25.28	-	110 6	0.50	1 (
RORD089		6767770.707								
RORD090	442990.96	6767770.725	-146.09	216.1	14.59	-30.8		193.6	0.80	2.8
RORD091	442990.786	6767770.897	-146.29	192	358.89		no significant results			
RORD092	442991.152	6767770.519	-146.33	186	337.99	-37.41	169.3		1.35	
							and 177.75	178.5	0.75	6.3
RORD093	442991.11	6767770.373	-146.58	176.5	321.39		no significant results			
RORD094	442866.04	6768000.724	45.306	388	167.49	-71.415	166.7			
							and 233.25	238.14	4.89	2.0
							and 309.22	311.75	2.53	2.1
							and 354.62	356.13	1.51	1.8
RORD095	442866.191	6768000.762	45.323	393	143.34	-70.7	233.49	234.58	1.09	14.9
RORD096	442866.215	6768001.007	45.289	417	122.68	-67.11	242.45	243.06	0.61	3.2
							and 376.69	377.35	0.66	2.4
RORD097	442866.396	6768001.353	45.287	435.51	106.72	-63.9	252.7	255.1	2.40	1.5
RORD098	442866.456	6768001.413	45.286	447	98.2	-58.42	247.7		1.15	
							and 429			
RORD099	442866.667	6768001.424	45.278	470.8	90.79	-52.75			0.77	
Refibered	1120001007	0,00001.121	13.270	170.0	50.75	52.75	and 254.45		0.90	
							and 271.57			
							and 433.7		0.08	
RORD100	442947.544	6767844.614	-157.54	138	284.64	-44.85	35.59			
KORDIOO	442947.544	0707044.014	-157.54	150	204.04	-44.65				
									2.95	
							and 113.06			
0000404	440047 500	6767044470	457.54	4 4 2 5	262.4.4	50.00	and 117.17			
RORD101	442947.533	6767844.479	-157.54	142.5	269.14	-50.39	106.35			
							and 115		0.67	
							and 126.84			
RORD102	442947.558	6767844.661	-157.56	175.2	290.429	-57.49	19.7	21		
							and 138.7	140.5		
RORD103	443099.651	6767906.383	291.239	168	308.15	4.57	111.15	111.45	0.30	11.6
RORD104	443099.846	6767906.275	291.6	152	309.31	17	31.15	32.05	0.90	1.3
							and 34.4	34.9	0.50	3.1
							and 114.9	115.4	0.50	1.9
RORD105	443099.674	6767906.479	291.143	191.9	317.34	-5.62	43.6	44.25	0.65	23.1
							and 151.4			
							and 155.7			
RORD106	443106.322	6767913.811	290.58	184	327.53	-12.51				
		0/0/0101011	200100		02/100		and 158.86			
RORD107	443106.44	6767913.777	291.02	163	328.6	-0.87				
RORD107	443106.486	6767913.789	291.02		341.34	3.08				
		0,07513.789	271.100	104	541.34	5.00	and 142.5			
	442106 49	6767012 000	200.910	100	242.1	0.01				
RORD109	443106.48	6767913.889	290.816	188	343.1	-9.91				
							and 149.88			
							and 157.47			
							and 160.2			
RORD110	443106.654	6767913.788	292.028	153	346.85	21.89	135	135.8	0.80	2.7
RORD111	443106.565	6767913.876	291.194	178	353.81	1.7	152.46	157.7	5.24	1.1

Summary of Drilling Results - Deep South

DEEP SOUTH DRILLI	NG MAY 2016									Downhole	
Hole	Easting	Northing	RL	Depth	Azimuth	Dip		From (m)	To (m)	Width (m)	Grade g/
DSSD001	456215.318	6731423.561	278.532	23.6	72.1	32.7	'	7.51	8.53	1.0	1.4
							and	15.16	19.7	4.5	14.7
DSSD002	456215.848	6731423.889	275.294	22	72.0	-45.0)	11.35	16.21	4.9	2.2
DSSD003	456216.824	6731419.121	278.674	23.5	71.9	32.4	l.	7.56	11.02	3.5	8.6
							and	17.52	19.82	2.3	8.9
DSSD004	456216.882	6731419.259	275.42	20.6	72.1	-47.4	Ļ	11.9	16.9	5.0	4.2
DSSD005	456217.642	6731414.417	278.476	23.6	72.2	30.6	5	9.3	12.8	3.5	18.6
							and	17.65	19.67	2.0	6.9
DSSD006	456217.724	6731414.364	275.438	22	72.3	-47.9)	9.43	11.11	1.7	3.9
							and	16.33	18.82	2.5	5.0
DSSD007	456219.483	6731409.354	278.426	22	72.3	29.0)	10.25	19.44	9.2	3.:
DSSD008	456219.448	6731409.812	275.392	21.1	72.2	-46.2	2	8.8	17.51	8.7	2.0
DSSD009	456220.987	6731405.106	275.501	21	72.9	-44.3		6.8	12.15	5.4	5.
DSSD010	456223.482	6731400.104	278.932	20.9	72.3	30.7	,	6.89	19.3	12.4	7.2
DSSD011	456223.274	6731400.352	275.617	21.1	72.1	-44.8	8	5.59	7.56	2.0	5.3
							and	9.6	18.39	8.8	3.7
DSSD012	456225.25	6731395.676	278.777	24.1	72.2	30.7	,	7	19.9	12.9	3.0
DSSD013	456225.487	6731395.683	275.914	21.1	72.2	-42.9)	8.9	9.95	1.1	2.:
							and	11.7	18.3	6.6	3.9
DSSD014	456226.554	6731390.768	276.042	21.2	72.1	-43.8	8	5.85	19.3	13.5	
DSSD015	456227.266	6731385.797	279.343	26.1	72.0	33.1		8.05	22.6	14.6	4.8
DSSD016	456227.488	6731385.835	276.113	20.65	72.0	-43.4	L	5.75	19.5	13.8	3.6
DSSD017	456228.351	6731380.975	279.384	26.6	72.0	35.6	5	8.6	24.15	15.6	5.9
DSSD018	456228.386	6731381.077	276.258	21.2		-44.9)	6.7	20.45	13.8	
DSSD019	456229.871	6731375.975				33.9		9.8			
							and	16.6			
DSSD020	456230.046	6731376.274	276.003	23	71.9	-49.0)	7.6	17.9	10.3	
DSSD021	456231.087	6731371.031				31.7	,	10.15	15.85		
DSSD022	456231.211	6731371.039				-48.5		12.25	16.5		
DSSD023	456211.073	6731434.142				31.8		7.3			
DSSD024	456211.277	6731434.369				-45.6		10.1			
DSSD025	456209.598	6731439.148				31.4		13.95			
DSSD026	456209.556	6731439.082				-44.6		5.3			
DSSD027	456207.985	6731443.711				31.6		15.2			
DSSD028	456208.034	6731443.958				-45.1		9.2			
							and	12.7			
DSSD029	456205.147	6731448.118	278.548	23.6	72.0	32.8		13.3		2.8	
DSSD030	456202.693	6731452.578						icant results			
DSSD031	456202.609	6731452.448						icant results			
DSSD032	456200.037	6731456.674				35.3	0	19.4	22.55	3.2	6.5
DSSD032	456200.225	6731457.055						icant results	55	5.2	0
DSSD033	456198.069	6731461.547				32.4		2	4.5	2.5	1.4
200001	+30130.003	0,01401.04/	2, 5.0-14	25	72.0	52.9	and	18.45			
DSSD035	456197.922	6731461.676	275 677	23	71.9	-46.0		7.75			
DSSD035	456197.273	6731465.145				-40.0		0.4			
0330030	450157.275	0731403.143	213.123	25	07.8	52.5	and	15.15			
DSSD037	456197.256	6731465.206	275 742	20.85	66.6	-43.9		7.2			

DEEP SOUTH DRILLING MAY 20				I			- ()	- / \	Downhole	<u> </u>
Hole	Easting	Northing	RL	Depth	Azimuth Dip		From (m)		Width (m)	
Face_2250BUT_ODN_001	456204.288	6731425.807	251.3			0.0	1.6			
Face_2250BUT_ODN_002	456202.638	6731429.567	251.39			0.0	4			
Face_2250BUT_ODN_003	456201.018	6731433.367	252.51	5.3	72.2	0.0	1			
						and	3.7			
Face_2250BUT_ODN_004	456199.428	6731437.037	252.61	5	70.6	0.0	0.5			
						and	3.8			
Face_2250BUT_ODN_005	456197.678	6731440.991	252.7			0.0	0.8			
Face_2250BUT_ODS_001	456212.669	6731417.088				0.0	1			1
Face_2250BUT_ODS_002	456213.849	6731413.078	251.51			0.0	1			
Face_2250BUT_ODS_004	456216.749	6731405.218	251.84			0.0	0			
Face_2250BUT_ODS_005	456218.069	6731401.188	251.91	4.5	250.1	0.0	2.4	3.2	2 0.8	
Face_2250SCA_ODN_001	456219.318	6731429.888	251.85			0.0	1.5	2.8	3 1.3	7.9
Face_2250SCA_ODN_002	456217.258	6731432.328	251.85	5	60.7	0.0 no signi	ificant results			
Face_2250SCA_ODN_003	456214.818	6731435.358	252.36	5.6	55.0	0.0	3.1	5.6	5 2.5	10.6
Face_2250SCA_ODN_004	456212.558	6731438.338	252.14	5	55.5	0.0	1	2	2 1.0	4.7
Face_2250SCA_ODN_005	456210.338	6731441.808	252.23	4.9	55.6	0.0 no signi	ificant results			
Face_2250SCA_ODN_006	456208.538	6731445.508	252.28	5.2	56.4	0.0 no signi	ificant results			
Face_2250SCA_ODN_007	456206.257	6731449.288	252.5	4.9	59.6	0.0	3.3	4.3	3 1.0	1.6
Face_2250SCA_ODN_008	456204.197	6731453.098	252.64	4.5	61.8	0.0 no signi	ificant results			
Face_2250SCA_ODN_009	456201.777	6731456.436	252.6	4.9	63.9	0.0 no signi	ificant results			
Face_2250SCA_ODN_010	456199.797	6731459.978	252.7	5	58.4	0.0	0.4	0.9	0.5	2.3
Face_2250SCA_ODN_011	456197.867	6731464.427	252.74	4.6	64.7	0.0	0.6	1.1	0.5	7.7
Face_2250SCA_ODN_012	456196.287	6731468.507	253.29	5	71.2	0.0	1.5	3	1.5	13.1
Face_2250SCA_ODN_013	456194.927	6731472.407	253.28	4.8	69.9	0.0	1.7	2	2 0.3	14.5
Face_2250SCA_ODS_001	456226.729	6731420.108	251.81	3.6	247.7	0.0	1.5	3.6	5 2.1	. 3.9
Face_2250SCA_ODS_002	456228.959	6731416.568	251.75	5.2	248.3	0.0	1.3	5.2	2 3.9	3.0
Face_2250SCA_ODS_003	456231.369	6731412.868	252.11	4.9	253.4	0.0	3.3	4.9	1.6	12.1
Face_2250SCA_ODS_004	456232.149	6731408.518	252.21	5	251.8	0.0	2	4	2.0	5.9
Face_2250SCA_ODS_005	456233.769	6731404.818	252.33	4.6	244.9	0.0	0	2.6	5 2.6	i 1.3
Face_2250SCA_ODS_006	456235.469	6731401.528	252.45	4.8	242.4	0.0	0.7	4.8	3 4.1	. 3.1
Face 2250SCA ODS 008	456239.93	6731394.188	252.4			0.0	2			1
Face_2250SCA_ODS_009	456241.227	6731390.358	252.4			0.0	2.3			
Face_2250SCA_ODS_011	456242.22	6731380.188				0.0	2.5			
Face_2250SCA_ODS_012	456242.34	6731376.108	252.95			0.0 no signi	ificant results			
Face_2250SCA_ODS_013	456242.721	6731371.998	253.03				ificant results			
Face 2250SCA ODS 014	456243.27	6731367.858	253.58				ificant results			
Face 2250SCA ODS 015	456243.441	6731363.808				0.0	1.4	4.1	2.7	3.7
Face_2250SCA_ODS_016	456243.941	6731359.768	253.5			0.0	4.4			1
Face_2250SCA_ODS_017	456244.501	6731355.968	253.05	5	264.7	0.0 no signi	ificant results			
Face_2275BUT_ODN_001	456206.648		276.53			0.0	2.8	3.6	6 0.8	7.9
Face 2275BUT ODN 002	456204.868	6731435.768	276.6				ificant results			
Face_2275BUT_ODN_003	456203.81	6731439.578	276.7			0	ificant results			
Face 2275BUT ODN 004	456202.078	6731442.977	276.6			0	ificant results			
Face_2275BUT_ODN_006	456198.177	6731449.977	276.6				ificant results			
Face_2275BUT_ODN_008	456193.977	6731457.577	276.6			0.0	3.8	4.3	8 0.5	4.7
Face_2275BUT_ODN_009	456192.477	6731461.977	276.6			0.0	2.1			
Face_2275BUT_ODN_010	456191.577	6731466.377	276.6				ificant results			
Face 2275BUT ODN 011	456190.957	6731470.357	276.8				ificant results			
Face_2275BUT_ODN_012	456190.146	6731474.277	276.8			0.0	1	4	4 3.0	2.1
Face_2275BUT_ODN_013	456189.226	6731477.917	276.8			0.0	0.3			
Face_2275BUT_ODN_014	456188.406	6731481.737	276.8			0.0	0.7			
Face_2275BUT_ODN_015	456187.026	6731485.327	276.8			0.0	0			
Face_2275BUT_ODN_016	456184.716	6731488.677	270.0			0.0	0.4			
Face_2275BUT_ODN_017	456183.206	6731492.877				0.0	0.4			
Face_2275BUT_ODN_017	456181.676	6731492.877	277			0.0	0.4			
Face_2275BUT_ODN_019	456180.076	6731500.847	277			0.0	0.5			
Face_2275BUT_ODN_019	456176.475		277.7			0.0	0			
Face_2275BUT_ODN_022	456175.332	6731511.152	277.7			0.0	2			
Face_2275BUT_ODN_023	456174.425		277.84			0.0	2			1
Face_2275BUT_ODN_024	456174.095	6731520.047	277.82			0.0	1			
Face_2275BUT_ODN_025	456173.755	6731523.687	277.82			0.0	0			
Face_2275BUT_ODN_026	456173.145		277.87			0.0	2			
Face_2275BUT_ODN_027	456173.454	6731532.027	277.88	5.1	84.1	0.0	0	5.1	5.1	4.0

DEEP SOUTH DRILLING MAY 20	16								Downhole	
Hole	Easting	Northing	RL	Depth	Azimuth I	Dip	From (m)	To (m)	Width (m)	Grade g/t
Face_2275BUT_ODN_028	456174.134	6731535.987	277.76	5	80.5	0.0	0	4	4.0	1.5
Face_2275BUT_ODN_029	456173.364	6731539.847	277.79	4.9	80.1	0.0	0.8	2.1	1.3	1.4
Face_2275BUT_ODN_030	456171.654	6731543.407	278.09	5.8	76.2	0.0	1.5	4.3	2.8	2.7
Face_2275BUT_ODN_031	456170.334	6731547.647	278.4	5	71.1	0.0	0	3	3.0	3.2
Face_2275BUT_ODN_032	456169.124	6731551.737	278.52	4.7	70.7	0.0	0	2.2	2.2	6.1
Face_2275BUT_ODN_033	456167.544	6731555.027	278.66	5		0.0	2	3	1.0	3.8
Face_2275BUT_ODN_034	456165.853	6731558.437	278.68	5.1		0.0	1.6			
Face_2275BUT_ODN_035	456163.783	6731561.847	278.74	5.3		0.0	2			
Face 2275BUT ODN 036	456161.973	6731565.457	278.85	4.8		0.0	2.5			
Face_2275BUT_ODS_001	456215.565	6731424.519	276.4	5.4		0.0	1			
Face 2275BUT ODS 002	456216.456	6731420.618	276.4	5.5		0.0	1			
Face 2275BUT ODS 003	456217.177	6731416.578	276.5	5.6		0.0	1.7			
Face_2275BUT_0DS_004	456218.126	6731410.578	276.52	4.8		0.0	0			
				4.0			0			
Face_2275BUT_ODS_005	456219.379	6731409.098	276.6			0.0			-	
Face_2275BUT_ODS_006	456220.359	6731405.558	276.8	4.7		0.0	0			
Face_2275BUT_ODS_007	456221.839	6731402.398	276.84	4.6		0.0	0			
Face_2275BUT_ODS_008	456223.549	6731399.328	277	4.9		0.0	2.9			
Face_2275BUT_ODS_009	456224.959	6731396.178	277.08	5.2		0.0	2.6			
Face_2275BUT_ODS_010	456225.9	6731392.708	277.17	5.4		0.0	3.7	4.7	1.0	1.7
Face_2275BUT_ODS_011	456226.8	6731388.588	277.16	5		0	ificant results			
Face_2275BUT_ODS_012	456228.04	6731380.828	277.16	5.3		0.0	2			
Face_2275BUT_ODS_013	456229.23	6731376.868	277.19	4.9		0.0	1.8	2.1	0.3	5.6
Face_2275BUT_ODS_014	456230.3	6731373.138	277.19	5.2	257.7	0.0 no sign	ificant results			
Face_2275BUT_ODS_015	456231.18	6731369.438	277.19	5	255.5	0.0	1.9	2.8	0.9	7.8
Face_2275BUT_ODS_016	456232.02	6731366.308	277.19	5.3	253.0	0.0	1.7	3	1.3	2.7
Face_2275SCA_ODN_001	456220.078	6731435.878	276.6	5.4	76.1	0.0	2.3	4.3	2.0	13.5
Face_2275SCA_ODN_002	456218.978	6731440.078	276.6	4.3	75.5	0.0	3.3	3.7	0.4	22.5
Face_2275SCA_ODN_003	456199.526	6731478.468	277.14	6.3	70.3	0.0	0	0.3	0.3	3.6
Face_2275SCA_ODN_004	456198.746	6731483.238	277.25	5.3	76.4	0.0	0	3.6	3.6	8.5
Face_2275SCA_ODN_005	456198.216	6731487.285	277.2	5.7	77.0	0.0	3	4	1.0	15.2
Face_2275SCA_ODN_006	456197.017	6731491.08	277.26	4.7	75.1	0.0	0.7	2.9	2.2	5.5
Face_2275SCA_ODN_007	456195.476	6731495.058	277.3	5	73.5	0.0	3	4	1.0	2.1
Face_2275SCA_ODN_009	456191.916	6731502.748	277.49	5.1	68.8	0.0	3	3.9	0.9	10.5
Face_2275SCA_ODN_010	456190.155	6731506.207	277.58	5.5	67.2	0.0	1.4	3.6	2.2	4.9
Face_2275SCA_ODN_011	456187.515	6731509.827	277.74	5.4	69.5	0.0 no sign	ificant results			
Face_2275SCA_ODN_012	456186.295	6731513.827	277.78	5.5	70.9	0.0 no sign	ificant results			
Face_2275SCA_ODN_013	456185.065	6731518.421	277.8	4.8		0.0	0.5	3.2	2.7	2.6
Face_2275SCA_ODN_014	456184.351	6731522.394	277.7	5		0.0	0			
Face_2275SCA_ODN_015	456184.345	6731525.747	276.26	5.5		0.0	0			
Face_2275SCA_ODS_001	456230.058	6731429.918	276.7	6.8		0.0	1.7			-
Face_2275SCA_ODS_002	456231.078	6731424.978	276.6	4.7		0.0	0			
Face_2275SCA_ODS_003	456232.179	6731420.878	276.6	4.9		0.0	0.6			
1466_222735674_6255_665	130232.173	0/01/120.0/0	270.0	1.5	200.1	and	3.5			
Face_2275SCA_ODS_004	456233.479	6731417.178	276.6	5	247.6	0.0	1.4			
Face_2275SCA_ODS_004	456234.839		276.6			0.0	1.4			
Face_2275SCA_ODS_005	456236.179	6731409.378	276.6	4.4		0.0	0			
Face_2275SCA_ODS_000	456238.029	6731409.378	270.0	5.3		0.0	0.3			
	456238.029									
Face_2275SCA_ODS_008			277 277	6.8		0.0	1.2			
Face_2275SCA_ODS_009	456240.779	6731397.819	277	5.3		0.0	0			
Face_2275SCA_ODS_010	456242.46	6731393.599	277	4.7		0.0	0			
Face_2275SCA_ODS_011	456243.87	6731388.979	277.31	4.9		0.0	0			
Face_2275SCA_ODS_012	456244.6	6731384.919	277.35	4.5		0.0	0			
Face_2275SCA_ODS_013	456245.33	6731381.408	277.3	5.4		0.0	1.4			
Face_2275SCA_ODS_014	456245.553		277.4	5		0.0	1.5			
Face_2275SCA_ODS_015	456245.513	6731372.999	277.49	4.6		0.0	3.6			
Face_2275SCA_ODS_016	456245.25	6731369.138	277.55	5.3		0.0	3.3			
Face_2275SCA_ODS_017	456245.451	6731365.358	277.58	5.3	266.3	0.0	1.7	4.7	3.0	
Face_2275SCA_ODS_018	456246.211	6731361.708	277.6	5.5	261.4	0.0	0.6	3.8	3.2	1.7
Face_2275SCA_ODS_019	456246.691	6731357.948	277.61	5.5	259.8	0.0	0	1.2	1.2	2.1
Face_2275SCA_ODS_020	456247.981	6731354.298	277.73	4.7	254.1	0.0	0	1.5	1.5	8.9
Face_2275SCA_ODS_021	456249.191	6731350.849	277.75	4.5		0.0	0			
			-	-	-					

DEEP SOUTH DRILLING MAY	2016								Downhole	
Hole	Easting	Northing	RL	Depth	Azimuth Dip)	From (m)	To (m)	Width (m)	Grade g/t
Face_2300BUT_ODN_001	456183.515	6731503.727	293.96	4.5	69.3	0.0	1.9	2.9	1.0	1.8
Face_2300BUT_ODN_002	456182.245	6731507.537	294.1	5.2	73.5	0.0	0.6	3.2	2.6	11.5
Face_2300BUT_ODN_003	456180.325	6731511.002	294.2	5.1	70.3	0.0	0.3	2.4	2.1	13.6
Face_2300BUT_ODN_004	456178.519	6731514.897	294.3	5	74.0	0.0	0	3.3	3.3	8.4
Face_2300BUT_ODN_005	456177.375	6731518.945	294.4	4.8	75.1	0.0	2	4	2.0	13.2
Face_2300BUT_ODN_006	456176.365	6731522.191	294.6	4	73.6	0.0	1	3	2.0	5.9
Face_2300BUT_ODN_007	456175.905	6731525.847	295.19	4.8	83.0	0.0	2	4.8	2.8	14.1
Face_2300BUT_ODN_008	456175.875	6731529.797	295.3	5	83.0	0.0	2	4	2.0	19.6
Face_2300BUT_ODN_009	456175.614	6731532.957	295.28	5.8	83.0	0.0	2	5	3.0	7.5
Face_2300BUT_ODN_010	456174.684	6731536.203	295.28	4.5	83.0	0.0	1.8	3.5	1.7	25.7
Face_2300BUT_ODN_011	456174.374	6731540.027	295.277	5.5	82.9	0.0	1	5.5	4.5	3.1
Face_2300BUT_ODN_012	456174.274	6731543.717	295.25	5.6	82.4	0.0 n	o significant results			
Face_2300BUT_ODN_013	456173.034	6731547.067	295.2	5.7	83.4	0.0 n	o significant results			
Face_2300BUT_ODN_014	456172.304	6731550.897	295.3	5.05	81.8	0.0	3.5	3.8	0.3	7.3
Face_2300BUT_ODN_015	456171.284	6731554.287	295.4	5.6	79.7	0.0	2	3.4	1.4	9.8
Face_2300BUT_ODN_016	456170.554	6731557.937	295.5	5.4	78.2	0.0	1.5	3.5	2.0	9.2
Face_2300BUT_ODN_017	456169.563	6731561.617	295.63	5.75	76.9	0.0 n	o significant results			
Face_2300BUT_ODN_018	456167.853	6731564.827	295.7	5.6	66.4	0.0	1	2.5	1.5	13.2
Face_2300BUT_ODN_019	456166.023	6731568.187	295.69	5.4	61.5	0.0	1	2.5	1.5	5.4
Face_2300BUT_ODN_020	456164.043	6731571.677	295.7	5.5	61.5	0.0	1	2.5	1.5	5.1
Face_2300BUT_ODN_021	456162.367	6731574.711	295.8	4.2	60.7	0.0	2	2.5	0.5	5.6
Face_2300SCA_ODN_001	456189.445	6731517.958	291.86	5.3	72.0	0.0	0	4.3	4.3	3.6
Face_2300SCA_ODN_003	456186.725	6731528.057	292.53	5.3	72.0	0.0	1.2	3.8	2.6	7.9
Face_2300SCA_ODN_004	456186.184	6731533.408	292.75	5	72.0	0.0	0.8	2.7	1.9	5.2
Face_2300SCA_ODN_005	456184.524	6731538.177	292.67	5.7	72.0	0.0	1.3	3.9	2.6	1.1

JORC 2012 Table 1 – Red October

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Sampling activities conducted at Red October by Saracen include reverse circulation (RC), surface and underground diamond drilling (DD) and underground face chip sampling. Historic sampling methods conducted since 1989 have included aircore (AC), rotary air blast (RAB), RC and surface and underground DD holes.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Sampling for RC, DD and face chip sampling is carried out as specified within Saracen sampling and QAQC procedures as per industry standard. RC chips and NQ diamond core provide high quality representative samples for analysis. RC, RAB, AC and surface DD drilling completed by previous holders is assumed to adhere to industry standard at that time (1989- 2004).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Saracen sampling activities have been carried out to industry standard. Reverse circulation drilling is used to obtain 1m samples, diamond core is sampled to geological intervals (0.2 m to 1.2m) and cut into half core and UG faces are chip sampled to geological intervals (0.2 to 1m), with all methods producing representative samples weighing less than 3kg. Samples are selected to weigh less than 3 kg to ensure total sample inclusion at the pulverisation stage. Saracen core and chip samples are crushed, dried and pulverised to a nominal 90% passing 75µm to produce a 40 g sub sample for analysis by FA/AAS. Visible gold is occasionally encountered in drillcore and face samples. Historical AC, RAB, RC and diamond sampling is assumed to have been carried out to industry standard at that time. Analysis methods include fire assay, aqua regia and unspecified methods.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The deposit was initially sampled by 495 AC holes, 73 RAB holes, 391 RC holes (assumed standard 5 ¼'' bit size) and 159 surface diamond NQ and HQ core holes. 5 RC holes were drilled using a 143mm diameter bit with a face sampling hammer. The rig was equipped with an external auxiliary/ booster. Saracen has previously completed 6 reverse circulation drillholes, 9 surface HQ and NQ diamond drillholes, 710 underground NQ diamond drill holes and sampled 2032 underground faces. Diamond drill core has been oriented using several different methods which include Ezi-Mark, ACT, and more recently Ori-Finder. Some historic surface diamond drill core appears to have been oriented by unknown methods.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC chip recoveries are recorded in the database as a percentage based on a visual weight estimate. Underground and surface diamond core recoveries are recorded as percentages calculated from measured core versus drilled metres, and intervals are logged and recorded in the database. Diamond core recoveries average >90%. Limited historic surface sampling and surface diamond recoveries have been recorded.

Criteria	JORC Code Explanation	Commentary			
	Measures taken to maximise sample recovery and ensure representative nature of the samples	During RC drilling daily rig inspections are carried out to check splitter condition, general site and address general issues. Ground condition concerns led to extensive hole conditioning meaning contamination was minimised and particular attention was paid to sample recovery. Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checked against depth given on the core blocks. UG faces are sampled left to right across the face allowing a representative sample to be taken due to the vertical nature of the orebody. Historical AC, RAB, RC and diamond drilling to industry standard at that time.			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no known relationship between sample recovery and grade for RC drilling. Diamond drilling has high recoveries due to the competent nature of the ground meaning loss of material is minimal. Any historical relationship is not known.			
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of all RC chips and diamond drill core is carried out. Logging records lithology, mineralogy, texture, mineralisation, weathering, alteration and veining. Logging is both qualitative and quantitative i nature. Geotechnical and structural logging is carried out on all diamond core holes to record recovery, RQD, defect number, type, fill material, shape and roughness and alpha and beta angles. Core is photographed in both dry and wet state. All faces are photographed and mapped. Qualitative and quantitative logging of historic data varies in its completeness. Some surface diamond di photography has been preserved.			
	The total length and percentage of the relevant intersections logged	All RC and diamond drillholes are logged in full and all faces are mapped. Historical logging is approximately 95% complete, some AC, RAB and RC pre-collar information is unavailable.			
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	All diamond core is cut in half onsite using an automatic core saw. Samples are always collected from the same side.			
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC drilling has been cone split and was dry sampled. UG faces are chip sampled using a hammer. AC, RAB and RC drilling has been sampled using spear, grab, riffle and unknown methods.			
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation of RC chips, diamond core and UG face chips adhere to industry best practice. It is conducted by a commercial laboratory and involves oven drying, coarse crushing then total grinding using an LM5 to a grind size of 90% passing 75 microns. Best practice is assumed at the time of historic sampling.			
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	All subsampling activities are carried out by commercial laboratory and are considered to be satisfactory. Sampling by previous holders is assumed to adhere to industry standard at the time.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.	RC field duplicate samples are carried out at a rate of 1:20 and are sampled directly from the on-board splitter on the rig. These are submitted for the same assay process as the original samples and the laboratory are unaware of such submissions. No duplicates have been taken of UG diamond core , face samples are duplicated on ore structures.			

Criteria	JORC Code Explanation	Commentary
		Sampling by previous holders assumed to be industry standard at the time.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of 3kg are considered to be appropriate given the grain size (90% passing 75 microns) of the material sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	A 40 gram fire assay with AAS finish is used to determine the gold concentration for RC chip, UG diamond core and face chip samples. This method is considered one of the most suitable for determining gold concentrations in rock and is a total digest method. Historic sampling includes fire assay, aqua regia and unknown methods.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were utilised for reporting gold mineralisation.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified reference material (standards and blanks) with a wide range of values are inserted into every RC, diamond drillhole(1 in 30) and UG face jobs to assess laboratory accuracy and precision and possible contamination. These are not identifiable to the laboratory. Blanks are also included at a rate of 1 in 30 for diamond drill core and one per lab dispatch for face samples. Feldspar flush samples are requested after each sample with visible gold, or estimated high grade. QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. QAQC data is reported monthly and demonstrates sufficient levels of accuracy and precision. Sample preparation checks for fineness are carried out to ensure a grind size of 90% passing 75 microns. The laboratory performs a number of internal processes including standards, blanks, repeats and checks. Industry best practice is assumed for previous holders. Historic QAQC data is stored in the database but not reviewed.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by the Geology Manager and corporate personnel.
	The use of twinned holes.	No specific twinned holes have been drilled at Red October but underground diamond drilling has confirmed the width and grade of previous exploration drilling.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	Primary data is collated in a set of excel templates utilising lookup codes. This data is forwarded to the Database Administrator for entry into a secure acQuire database with inbuilt validation functions. Chips from RC drillholes are stored in chip trays for future reference. Remaining half core is stored in core trays and archived on site Hard copies of face mapping, backs mapping and sampling records are kept on site. Digital scans are also kept on the corporate server. Data from previous owners was taken from a database compilation and was validated as much as practicable before entry into the Saracen acQuire database.
	Discuss any adjustment to assay data.	No adjustments have been made to assay data. First gold assay is utilised for resource estimation. Reassays carried out due to failed QAQC will replace original results, though both are stored in the database.

Criteria	JORC Code Explanation	Commentary
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All drillhole collars are picked up by company surveyors using a Leica TS15i (total station) with an expected accuracy of +/-2mm. Underground faces are located using a Leica D5 disto with and accuracy of +/- 1mm from a known survey point. Exploration RC holes have been gyroscopically downhole surveyed by ABIMS where possible once drilling is completed. Surveys are carried out every 30m downhole during RC and diamond drilling using an Eastman single shot camera. Previous holders' survey accuracy and quality is generally unknown.
	Specification of the grid system used.	A local grid system (Red October) is used. It is rotated 44.19 degrees east of MGA_GDA94. The two point conversion to MGA_GDA94 zone 51 is ROEast RONorth RL MGAEast MGANorth RL Point 1 5890.71 10826.86 0 444223.25 6767834.66 0 Point 2 3969.83 9946.71 0 442233.31 6768542.17 0 Historic data is converted to Red October local grid on export from the database.
	Quality and adequacy of topographic control.	DGPS survey has been used to establish a topographic surface.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal spacing for the reported results are not uniform and therefore a definitive drill spacing will not be quoted
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not all data reported meets the required continuity measures to be considered for inclusion in a resource estimate. Holes reported inside or with in 40m of the resource will be incorporated into the resource model, or if sufficient density of data confirms continuity, it will be considered for inclusion in the resource.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	RC drillholes are sampled to 1m intervals and underground core and faces are sampled to geological intervals; compositing is not applied until the estimation stage. Some historic RAB and RC sampling was composited into 3-4m samples with areas of interest re-sampled to 1m intervals. It is unknown at what threshold this occurred.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	RC drilling was carried out at the most appropriate angle possible. The mineralisation is intersected at closely as possible to perpendicular. The steeply dipping nature of the mineralisation means that most holes pass through mineralisation at lower angles than ideal. Production reconciliation and underground observations indicate that there is limited sampling bias. Underground diamond drilling is designed to intersect the orebody in the best possible orientation given the constraints of underground drill locations. UG faces are sampled left to right across the face allowing a representative sample to be taken due to the vertical nature of the orebody
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No significant sampling bias has been recognised due to orientation of drilling in regards to mineralised structures
Sample security	The measures taken to ensure sample security.	Samples are prepared on site under supervision of Saracen geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into larger secured bags and delivered to the laboratory by Saracen personnel.

Section 1: Sampling Techniques and Data							
Criteria	JORC Code Explanation	Commentary					
Audits or reviews		An internal review of companywide sampling methodologies was conducted to create the current sampling and QAQC procedures. No external audits or reviews have been conducted.					

Section 2: Reporting	g of Exploration Results	
Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Red October is wholly located within Mining Lease M39/412. Mining Lease M39/412 is held 100% by Saracen Gold Mines Pty Ltd a wholly owned subsidiary of Saracen Mineral Holdings Limited. Mining Lease M39/412 has a 21 year life (held until 2019) and is renewable for a further 21 years on a continuing basis. There is one Registered Native Title Claim over M39/412 for the Kurrku group (WC10/18), lodged December 2010. Mining Lease M39/412 was granted prior to registration of the Claim and is not affected by the Claim. Aboriginal Heritage sites within the tenement (Site Numbers WO 2442, 2447, 2448, 2451, 2452 and 2457) are not affected by current mining practices. Third party royalties are payable on the tenement: A Royalty is payable under Royalty Deed M39/411, 412, 413 based on a percentage of deemed revenue (minus allowable costs) on gold produced in excess of 160,000 ounces A Royalty is payable based on a percentage of proceeds of sale or percentage of mineral value. All production is subject to a Western Australian state government NSR royalty of 2.5%.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and the licence to operate already exists.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Mount Martin carried out exploration including RAB and RC drilling in 1989. This along with ground magnetics was used to delineate a number of anomalies on islands to the immediate north and south of Red October. Mount Burgess Gold Mining identified a north east trending magnetic anomaly on Lake Carey between the islands considered analogous to Sunrise Dam in 1993. Aircore and RC drilling was carried out to define what would become the Red October pit. Sons of Gwalia entered into a joint venture with Mount Burgess, carrying out RC and diamond drilling to define a pittable reserve before purchasing Mount Burgess' remaining equity. Extension RC and diamond drilling from within and around the pit defined the potential underground resource.
Geology	Deposit type, geological setting and style of mineralisation.	Red October gold mine is situated within an Archaean greenstone belt of the Laverton Tectonic Zone. The stratigraphic sequence consists of footwall tholeiitic basalts, mineralised shale (containing ductile textures defined by pyrite mineralisation) and a hangingwall dominated by ultramafic flows interbedded with high-Mg basalts. Prehnite- pumpellyite facies are evident within both the tholeiitic basalts and komatiite flows. Sulphide mineralisation is hypothesised to have been caused from interaction with an auriferous quartz vein, which has caused the intense pyrite-defined ductile textures of the shale in the upper levels. The fluid is believed to have been sourced from the intruding granitoid to the south of the deposit
Drillhole information	A summary of all information material to the	All material data is periodically released on the ASX:

Criteria	JORC Code Explanation	Commentary
	 understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	25/05/2015, 10/03/2015,25/05/2015.16/01/2014, 14/10/2013, 23/07/2013, 17/04/2013, 25/01/2013, 14/06/2012, 27/04/2012, 28/07/2011, 03/06/2011
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	All significant intercepts have been length weighted with a lower cut-off Au grade of 2.5ppm. No high grade cut is applied Intercepts are aggregated with minimum width of 1m and maximum width of 3m for internal dilution. Where stand out higher grade zone exist with in the broader mineralised zone, the higher grade interval is reported also.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are reported
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	No exploration results have been reported in this release. The geometry of the mineralisation is highly variable and the complex nature of the ore bodies makes the definitive calculation of true thickness difficult. Drilling has been orientated to intersect the various ore bodies at most optimum angle where possible. This has not always been achieved. Where holes have drilled parallel to or within a lode, additional holes have been drilled at a more suitable orientation to account for the poor angle.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole	No diagrams are referenced in this release.

Section 2: Reportin	Section 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary	
	collar locations and appropriate sectional views.		
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results from the recent campaign have been reported.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Dr John McLellan from GMEX Pty Ltd was contracted to carry out a stress modelling study on the Red October deposit. A data set of structural observations from core and field mapping was compiled and used to create a three dimensional mesh of the deposit. A series of regional scale stress fields of varying deformational stages and strengths were applied to the mesh to predict the behaviour of the Red October deposit and highlight areas of increased stress and strain and thus likely mineralisation. Two targets were drilled in the recent RC campaign with results supporting John's findings. Model Earth Pty was engaged to conduct a structural review of the Red October camp area in May 2015. Several local and regional scale targets were identified for follow-up.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	The exploration effort continues at Red October. The focus remains in the near mine scale areas to extend and build the resource base.	

JORC 2012 Table 1 – Deep South

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Saracen has recently completed a biogeochemical sampling program at Deep South involving the sampling of new leaf growth on established <i>Acacia</i> trees on a 100m x 800m spacing. Other sampling methods undertaken by Saracen at Deep South previously have included reverse circulation drillholes (RC), diamond drillholes (DD) and RC grade control drilling within the pit. Historic sampling methods conducted since 1983 have included rotary air blast (RAB), reverse circulation and diamond drillholes.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Samples were collected from trees of a consistent species and height. Sampling for diamond and RC drilling is carried out as specified within Saracen sampling and QAQC procedures as per industry standard. RC chips and diamond core provide high quality representative samples for analysis. RC, RAB and DD core drilling was completed by previous holders to industry standard at that time (1983-2004).
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Historical RAB, RC and diamond sampling was carried out to industry standard at that time. Analysis methods include fire assay, aqua regia, atomic absorption spectroscopy and unspecified methods.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	The deposit was initially sampled by 114 RAB holes, 211 RC holes (assumed standard 5 ¹ / ₄ ^v bit size) and 29 surface HQ and unknown diameter diamond core holes.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed	

Criteria	JORC Code Explanation	Commentary
		Diamond core recovery percentages calculated from measured core versus drilled intervals are logged and
		recorded in the database. Recoveries average >98%.
		Limited historic diamond recoveries have been recorded.
	Measures taken to maximise sample recovery and ensure representative nature of the samples	During RC drilling daily rig inspections are carried out to check splitter condition, general site and address general issues.
		Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking.
		Depths are checked against depth given on the core blocks. During GC campaigns the sample bags weight versus bulk reject weight are compared to ensure adequate
		and even sample recovery. Historical RAB, RC and diamond drilling to industry standard at that time.
	Whether a relationship exists between sample	
	recovery and grade and whether sample bias may	
	have occurred due to preferential loss/gain of fine/coarse material.	Any historical relationship is not known.
Logging	Whether core and chip samples have been	Logging of RC chips and diamond drill core records lithology, mineralogy, texture, mineralisation,
	geologically and geotechnically logged to a level of	weathering, alteration and veining.
	detail to support appropriate Mineral Resource	Geotechnical and structural logging is carried out on all diamond holes to record recovery, RQD, defect number, type, fill material, shape and roughness and alpha and beta angles.
	estimation, mining studies and metallurgical studies.	Chips from all RC holes (exploration and GC) are stored in chip trays for future reference while remaining
	Whether logging is qualitative or quantitative in nature.	core is stored in core trays and archived on site.
	Core (or costean, channel, etc) photography.	Core is photographed in both dry and wet state.
	Core (or costean, channel, etc) photography.	Qualitative and quantitative logging of historic data varies in its completeness.
	The total length and percentage of the relevant	All RC and diamond drillholes and grade control holes are logged in full.
	intersections logged	Historical logging is complete.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter,	All drill core is cut in half onsite using an automatic core saw. Samples are always collected from the same
and sample preparation	half or all core taken.	side.
		Some historic drillcore was half core sampled, or sampled via unknown methods.
	If non-core, whether riffled, tube sampled, rotary	All exploration and grade control RC samples are cone or riffle split. Occasional wet samples are
	split, etc and whether sampled wet or dry.	encountered; increased air capacity is routinely used to aid in keeping the sample dry when water is
		encountered.
		Historic RAB and RC drilling was sampled using riffle and unknown methods.
	For all sample types, the nature, quality and	The sample preparation of diamond core and RC chips adhere to industry best practice. It is conducted by
	appropriateness of the sample preparation technique.	a commercial laboratory or onsite laboratory and involves oven drying, coarse crushing then total grinding
		to a size of 90% passing 75 microns.
		Best practice is assumed at the time of historic sampling.
	Quality control procedures adopted for all sub-	All subsampling activities are carried out by commercial laboratory or onsite laboratory and are considered
	sampling stages to maximise representivity of	to be satisfactory.
	samples.	Sampling by previous holders assumed to be industry standard at the time.
	Measures taken to ensure that the sampling is	RC field duplicate samples are carried out at a rate of 1:20 and are sampled directly from the on-board
	representative of the in situ material collected,	splitter on the rig. These are submitted for the same assay process as the original samples and the
		laboratory are unaware of such submissions.

Criteria	JORC Code Explanation	Commentary
	including for instance results for field duplicate/second half sampling.	Sampling by previous holders assumed to be industry standard at the time.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes of 3kg are considered to be appropriate given the grain size (90% passing 75 microns) of the material sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	RC chip samples and diamond core are analysed by external laboratories using a 50g fire assay with AAS finish. This method is considered suitable for determining gold concentrations in rock and is a total digest method. GC samples were analysed in the Saracen onsite laboratory using a pulverise and leach method. This method is a partial digest. Historic sampling includes fire assay, aqua regia, atomic absorption spectroscopy and unspecified methods.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools have been utilised for reporting gold mineralisation.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified reference material (standards and blanks) with a wide range of values are inserted into every drillhole at a rate of 1:25 for exploration RC and DD, and 1:40 for GC drilling. These are not identifiable to the laboratory. QAQC data returned are checked against pass/fail limits with the SQL database and are passed or failed on import. A report is generated and reviewed by the geologist as necessary upon failure to determine further action. QAQC data is reported monthly. Sample preparation checks for fineness are carried out to ensure a grindsize of 90% passing 75 microns. The laboratory performs a number of internal processes including standards, blanks, repeats and checks. QAQC data analysis demonstrates sufficient accuracy and precision. Industry best practice is assumed for previous holders.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intercepts are verified by the Geology Manager and corporate personnel.
	The use of twinned holes.	No specific twinned holes have been drilled at Deep South but grade control drilling has confirmed the width and grade of previous exploration drilling.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	Primary data is collated in a set of excel templates utilising lookup codes. This data is forwarded to the Database Administrator for entry into a secure acQuire database with inbuilt validation functions. Data from previous owners was taken from a database compilation and validated as much as practicable before entry into the Saracen acQuire database.
	Discuss any adjustment to assay data.	No adjustments have been made to assay data. First gold assay is utilised for resource estimation.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Exploration drillholes are located using a Leica 1200 GPS with an accuracy of +/- 10mm. Drillhole collars within the pit and immediate surrounds are picked up by company surveyors using a Trimble R8 GNSS (GPS) with an expected accuracy of +/-8mm. Downhole surveys are carried out on RC and diamond drillholes using an Eastman single shot camera at regular intervals (usually 30m). A number of drillholes have also been gyroscopically surveyed.

Criteria	JORC Code Explanation	Commentary
		Grade control drilling was not downhole surveyed due to short hole lengths. Previous holders' survey accuracy and quality is unknown
	Specification of the grid system used.	A local grid system (Safari Bore) is used at Deep South. The two point conversion to MGA_GDA94 zone 51 is: SBEast SBNorth RL MGAEast MGANorth RL Point 1 51000 34000 0 451137.753 6734157.921 0 Point 2 51000 30000 0 451137.896 6730157.896 0 Historic data is converted to the Safari Bore local grid upon export from the database.
	Quality and adequacy of topographic control.	Topographic control originally used site based survey pickups in addition to Kevron aerial photogrammetric surveys with +/- 5m resolution. Pre mining, new and more detailed topography has since been captured and will be used in future updates and for subsequent planning purposes.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The nominal spacing for drilling is 20m x 40m and 40m x 40m Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC classifications applied.
Orientation of data in relation to geological structure	Whether sample compositing has been applied.	Sample compositing is not applied until the estimation stage. Some historic RAB and RC sampling was composited into 3-4m samples with areas of interest re-sampled to 1m intervals. It is unknown at what threshold this occurred.
	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of drillholes are positioned to achieve optimum intersection angles to the ore zone as are practicable.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No significant sampling bias has been recognised due to orientation of drilling in regards to mineralised structures.
Sample security	The measures taken to ensure sample security.	Samples are prepared on site under supervision of Saracen geological staff. Samples are selected, bagged into tied numbered calico bags then grouped into secured cages and collected by the laboratory personnel. Sample submissions are documented via laboratory tracking systems and assays are returned via email
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	An internal review of companywide sampling methodologies was conducted to create the current sampling and QAQC procedures. No external audits or reviews have been conducted.

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title 	The Deep South pit is located on M39/740. The tenement is held 100% by Saracen Gold Mines Pty Ltd, a wholly owned subsidiary of Saracen Mineral Holdings Limited. Mining Lease M39/740 has a 21 year life (held until 2024) and is renewable for a further 21 years on a continuing basis. Mining Lease M39/740 is subject to one royalty agreement, one caveat (151H/067) and a bank mortgage (415495). All production is subject to a Western Australian state government NSR royalty of 2.5%. Mining Lease M39/740 is subject to the Edjudina Pastoral Compensation Agreement. There are no registered Aboriginal Heritage sites within Mining Lease M39/740.
	reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Exploration in the vicinity of Deep South commenced in the 1980's with drilling around the historic Deep Well workings 500m north of Deep South, as well as regional RC drilling carried out by Western Mining Corporation. Initial auger sampling carried out over Deep South by Pancontinental Mining in 1994 failed to detect mineralisation due to the transported material overlying the deposit. Wide spaced east angled RAB drilling carried out by Goldfields in 1999 intersected mineralisation, but results were not repeated in further drilling and the project area was sold to Sons of Gwalia. Sons of Gwalia completed extensive RC and diamond drilling to define the Deep South resource, with mining operations undertaken in 2004 before their collapse and takeover by St Barbara.
Geology	Deposit type, geological setting and style of mineralisation.	Deep South lies on the eastern margin of the Norseman – Wiluna greenstone belt. This belt is differentiated into numerous structural-stratigraphic domains separated by major regional structures, with Deep South located within the narrow NNW trending Linden Domain. The lithology comprises metasedimentary and felsic volcaniclastic rocks with an ultramafic and high magnesium basalt layer. Mineralisation occurs in two loads concordant to geology, the Butler and Scarlett lodes, and is confined between layered metasedimentary and felsic volcaniclastic units on both the hangingwall and footwall. The two lodes are separated by a high magnesium basalt and an ultramafic unit. The Butler lode is located in the hangingwall and is strongly silica and pyrrhotite-pyrite altered, and well laminated (appearing like a BIF within the oxidise portion). The contrasting physical properties of this unit to the surrounding unit have created fluid pathways and traps, as well as the high iron content of the unit providing a chemical trap, for gold deposition The Scarlett lode is strongly weathered in the upper oxide portion to a gossanous material comprising hematite, goethite and quartz fragments. Weathering at Deep South has been preferential along Scarlett lode due to its high carbonate content. Where fresh, the lode is a fine grained banded carbonate unit with variable pyrrhotite, pyrite and magnetite. It is weakly foliated in line with the regional foliation.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation	All material data is periodically released on the ASX: 23/07/2013, 10/10/2012, 31/07/2012, 03/06/2011, 29/07/2010 Future drill hole data will be periodically released or when a results materially change the economic value of the project.
	above sea level in metres) of the drill hole collar	Exclusion of the drilling information will not detract from the reader's view of the report.

Criteria	JORC Code Explanation	Commentary
	 dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All significant intercepts have been length weighted with a minimum Au grade of 1ppm. No high grade cut off has been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Intercepts are aggregated with minimum width of 1m and maximum width of 3m for internal dilution. Where stand out higher grade zone exist with in the broader mineralised zone, the higher grade interval is reported also.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	There are no metal equivalents reported in this release.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Previous announcement included sufficient detail to clearly illustrate the geometry of the mineralisation and the recent drilling. All results are reported as downhole lengths. This remains consistent with other announcements.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	All significant exploration results released by Saracen are accompanied by the appropriate diagrams and maps at the time of the release.
Balanced Reporting	Where comprehensive reporting of all Exploration Results are not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results from the recent campaign have been reported, irrespective of success or not.

Section 2: Reportin	ection 2: Reporting of Exploration Results		
Criteria	JORC Code Explanation	Commentary	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	A small geochemical program was undertaken in 2013 to determine the key features associated with mineralisation. The program gave some insight into the local characteristics of the Scarlett and Butler lodes. More work is needed to fully appreciate the geochemical signature associated with the mineralisation. A detailed gravity survey was recently completed at Deep South on a 400m x 100m grid to assist in the interpretation of the basement geology. The data is currently being processed and interpreted.	
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	The initial results from the biogeochemical sampling were encouraging and further expansion of the survey area is currently being planned. Currently there are no immediate plans for drilling at Deep South. The most recent drill program carried out in 2013 was suspended until further work had been completed on the underground feasibility.	