

ASX ANNOUNCEMENT ASX Code: BDR

6 July 2016

HIGH GRADE RESULTS FROM AB1, AB2 AND D SUL

• Tap AB2 Trough Lode high grade oxide results:

F02014	24 m @ 7.99 g/t from 102 m including 3 m @ 52.34 g/t from 115 m
F02019	13 m @ 164 g/t from 126 m including 6 m @ 351.3 g/t from 126 m including 1 m @ 1,084.43 g/t from 126 m
F02020	4 m @ 35.58 g/t from 126 m to BOH
F02021	22 m @ 34.91 g/t from 99 m to BOH including 12 m @ 62.58 g/t from 108 m to BOH

• Tap AB1 Trough Lode results confirm up dip potential and growing resource:

F01964	36 m @ 4.25 g/t from 74 m and 25 m @ 3.37 g/t from 138 m
F01988	33 m @ 1.90 g/t from 60 m and 8 m @ 1.69 g/t from 100 m

• Tap D Sul high grade results indicate near surface oxide open pit potential:

GCRC19264	27 m @ 12.94 g/t from 33 m to BOH including 3 m @ 82.80 g/t from 43 m
GCRC19169	19 m @ 2.35 g/t from 35 m to BOH
GCPF8110	9 m @ 5.87 g/t from 3 m to BOH

Beadell Resources Limited ("**Beadell**" or "the **Company**") is pleased to announce the receipt of new high grade oxide drilling results from the Tap AB Mine area at its 100% owned Tucano mine in Brazil (Figures 1-3, Table 1). All results in this release are within 2 km of the Tucano mill.

Beadell Resources Limited

The ongoing results from both the Tap AB1 and Tap AB2 Trough Lodes are significant in that both of these lodes occur where extremely deep weathering along the main contact between the banded iron formation (BIF) and schist has resulted in oxide mineralisation reaching depths in excess of 200 m. The potential to add high grade oxide ounces into the mine plan within 2 km of the plant is very encouraging.

With the onset of the dry season, exploration and resource definition drilling is escalating with an additional RC rig mobilising to site bringing the total number of rigs at Tucano to five. Regular news flow is anticipated over the coming months as exploration programs continue at the Tap AB Trough Lodes, Neo Lode and Urucum Underground, while new programs are initiated at Duckhead and first pass RC drilling of the regional Mutum target.

In addition, a 9,000 m drill program is planned for August 2016 at the Company's Tropicana East project in Western Australia.

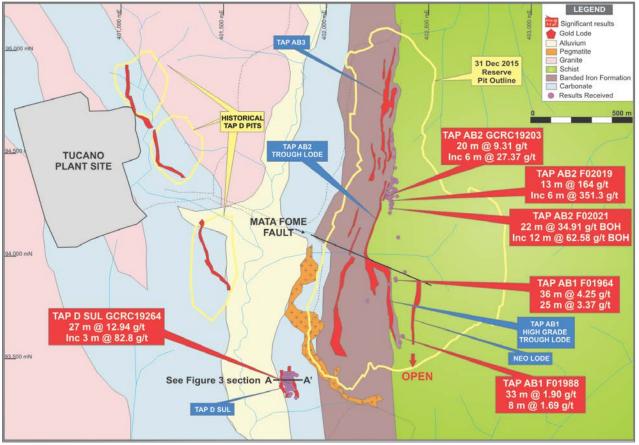


Figure 1. Tap AB – Tap D plan showing location of drill results

Tap AB2 Trough Lode

Resource definition and extension drilling of the Tap AB2 Trough Lode continues to produce positive results including **13 m @ 164 g/t** from 126 m including **6 m @ 351.3 g/t** from 126 m located 40 m below the current reserve open pit (Figure 2).

The Tap AB2 Trough Lode forms a strongly continuous high grade shoot with approximate dimensions of 150 m strike by 10 m true width plunging at about 45 degrees to the north. The recent resource definition drilling completed on the Tap AB2 lode within and below the open pit will form the basis of a new updated resource model leading into a re-estimation of the open pit reserve. The current phased cut back at Tap AB2 will result in mining of a portion of the Tap AB2 Trough Lode around the end of 2016.

The Tap AB2 Trough Lode remains open at depth with potential for open pit extensions and underground assessment in the future.

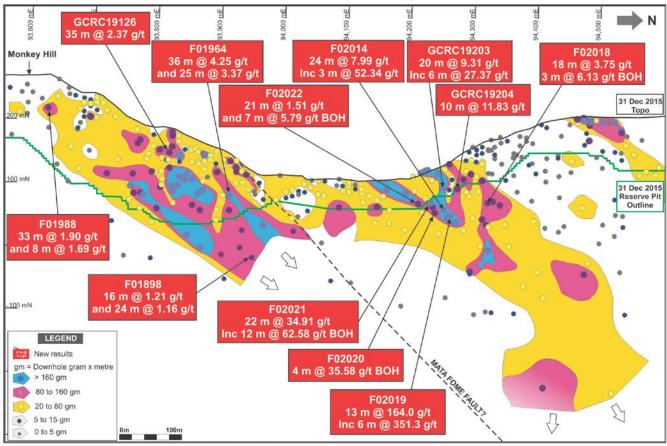


Figure 2. Tap AB1 & 2 composite longsection showing location of new results

TAP AB1 Trough Lode

A drilling program targeting the up plunge projection of both the Tap AB1 Trough Lode and the Neo Lode has commenced with initial results indicating that wide zones of gold mineralisation do continue up plunge. A new up plunge result to **33 m @ 1.90 g/t** from 60 m and **8 m @ 1.69 g/t** from 100 m indicates the potential for further resource ounces to be added towards the top of Monkey Hill as we trace the Tap AB1 Trough Lode to the south.

The Tap AB1 Trough Lode is characterised by multiple wide zones of subvertically dipping oxide gold mineralisation along the same contact and deep weathering profile as the Tap AB2 Trough Lode offset to the north. Resource definition drilling within the main high grade core of the Tap AB1 Trough Lode has further enhanced the lode with a significant result of **36 m @ 4.25 g/t** from 74 m and **25 m @ 3.37 g/t** from 138 m.

The Tap AB1 Trough lode is interpreted to be plunging at approximately 45 degrees to the north and remains open at depth.

Tap D Sul

New significant results have been received from RC drilling at the Tap D Sul target just to the south west of the Tap AB1 open pit and adjacent to an active haul road. The mineralisation has been delineated over a strike length in excess of 100 m and remains open down dip. Approximate true width results of up to **27 m @ 12.94 g/t** from 33 m to Bottom of Hole (BOH) including **3 m @ 82.80 g/t** from 43 m have been intersected in the drilling (Figures 1 & 3).

Tap D Sul appears to be a continuation of the Tap D trend where a series of carbonate hosted open pits have been mined previously. Several new target horizons have now been identified including the gap northwest of Tap D Sul where shallow alluvium and drainage has precluded systematic drill testing in the past within the carbonate unit west of the Tucano BIF. The Company is now working on plans to test this gap and the continuation of the carbonate unit adjacent to the main Tucano BIF.

The location of this new oxide mineralisation right next to existing infrastructure suggests that Tap D Sul has the potential to form part of the mine plan around the end of 2016.

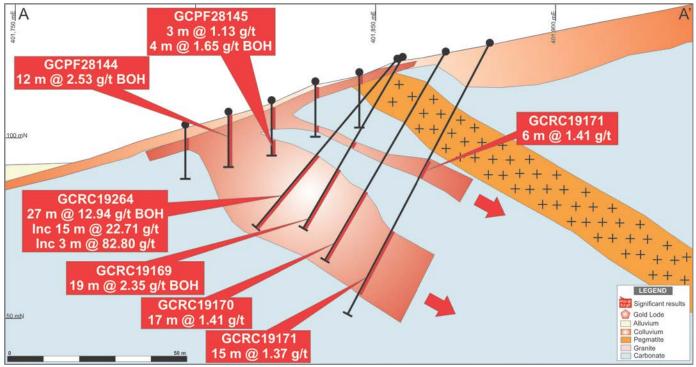


Figure 3. Tap D Sul cross section showing location of new results.

Commenting, Simon Jackson, CEO and Managing Director said: "Our exploration team continues to have significant success within the Tucano mine corridor. Our theory has always been that higher grade mineralisation exists at Tucano and that the property is under-explored. As a result of the continuing success at the Tap AB1 and Tap AB2 Trough Lodes, we are now utilising multi-element analysis to target other areas on the BIF/schist contact where this style of mineralisation may exist. The outlining of high grade carbonate-hosted mineralisation on the projected extension of the Tap D trend is an exciting development as we continue to improve our understanding of the various mineralised rock types at Tucano."

For further information please contact:

Simon Jackson | Chief Executive Officer Greg Barrett | Chief Financial Officer T: +61 8 9429 0800 info@beadellresources.com.au

Competent Persons Statement

The information in this report relating to Exploration Results and Mineral Resources and Ore Reserves is based on information compiled by Mr Robert Watkins who is a member of the Australasian Institute of Mining and Metallurgy and has sufficient exploration experience which is relevant to the various styles of mineralisation under consideration to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Watkins is a full time employee of Beadell Resources Limited. Mr Watkins consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Table 1 Tap AB1, AB2, D Sul drill results

Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap AB1 Trough Lode	F01898	93,922	402,382	168	-64	292	120 148 181 205 234 260 280 288	126 164 184 229 248 271 284 296	6 16 3 24 14 11 4 8	0.78 1.21 0.98 1.16 0.65 0.71 0.95 0.70
Tap AB1 Trough Lode	F01959	93,861	402,305	156	-60	90	162	168	6	0.91
Tap AB1 Trough Lode	F01963	93,880	402,339	157	-60	270	25 36 60 89 141	31 39 63 95 160	6 3 3 6 19	1.72 1.33 0.89 0.93 0.96
Tap AB1 Trough Lode	F01964	93,910	402,342	157	-60	268	74 114 138	110 124 163	36 10 25	4.25 0.66 3.37
Tap AB1 Trough Lode	F01965	93,890	402,336	157	-55	266	35 54	37 61	2 7	2.88 0.99
Tap AB1 Trough Lode	F01983	93,580	402,360	278	-60	269	53 64 94	59 85 97	6 21 3	1.23 2.30 1.03
Tap AB1 Trough Lode	F01988	93,610	402,367	278	-55	289	55 60 100 122	57 93 108 130	2 33 8 8	0.51 1.90 1.89 0.82
Tap AB1 Trough Lode	F01990	93,611	402,374	278	-56	308	153 172 180 191	157 174 187 199	4 2 7 8	0.90 1.02 1.79 1.90
Tap AB2 Trough Lode	F02010	93,781	402,198	157	-61	124	84 116 187	86 120 190	2 4 3	1.02 0.86 1.36
Tap AB2 Trough Lode	F02013	94,090	402,351	157	-69	258	152 165 185 193 221	156 167 187 197 226	4 2 2 4 5	0.95 1.31 0.60 1.39 1.31
Tap AB2 Trough Lode	F02014	94,250	402,317	157	-57	269	90 102 Inc 115	92 126 118	2 24 3	0.54 7.99 52.34

Tap AB2 Trough Lode F02016 94,290 402,320 157 -60 269 45 48 8 3,72 Tap AB2 Trough Lode F02017 94,290 402,345 158 -60 269 45 48 8 3 0.59 Tap AB2 Trough Lode F02018 94,320 402,336 157 -60 268 194 112 18 3.5 0.59 Tap AB2 Trough Lode F02019 94,260 402,316 157 -59 268 194 112 18.3 3.6 1.51 Tap AB2 Trough Lode F02021 94,240 402,316 157 -59 268 16.126 130 4 35.58 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 96-BOH 180 121 22.528 36.9 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76 76	Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap AB2 Trough Lode F02016 94,290 402,320 157 -60 269 39 41 2 0.87 Tap AB2 Trough Lode F02017 94,290 402,334 158 -60 269 170 172 2 0.63 Tap AB2 Trough Lode F02018 94,320 402,336 157 -60 268 94 112 18 3 6.13 Tap AB2 Trough Lode F02019 94,260 402,320 157 -59 268 126 139 13 1.64 Tap AB2 Trough Lode F02021 94,240 402,315 157 -59 266 126 BOH 130 4 35.58 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 266 126 BOH 120 12 12 22 34.91 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 12 21<										1 · · · · ·	
Tangh Ab2 F02016 94,290 402,320 157 -60 269 45 48 3 0.73 Tap AB2 F02017 94,290 402,345 158 -60 269 195 198 3 0.59 Tap AB2 F02018 94,320 402,336 157 -60 268 192 112 13 1.64 Trough Lode F02019 94,260 402,321 157 -59 266 116 126 132 13 1.64 Trough Lode F02020 94,240 402,316 157 -56 266 126 BOH 130 4 355.80 Tap AB2 F02021 94,230 402,316 157 -52 269 99 BOH 120 12 22 34.91 Trough Lode F02021 94,230 402,316 157 -52 270 0 21 1.51 35.58 Tap AB2 F02021 94,230 402,309<											
Tap AB2 Trough Lode F02017 94,290 402,345 158 -60 269 170 172 2 0.63 Tap AB2 Trough Lode F02018 94,320 402,336 157 -60 268 94 112 118 3.75 Tap AB2 Trough Lode F02019 94,260 402,320 157 -59 268 160 126 139 13 1.64 Tap AB2 Trough Lode F02020 94,240 402,316 157 -59 268 160 126 130 4 35.58 Tap AB2 Trough Lode F02021 94,260 402,309 157 -52 266 126 BOH 120 12 62.58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 260 0 21 21 1.62 22 34.91 10 0.90 113 BOH 120 120 120 120 120 120 120 120 16 120		F02016	94,290	402,320	157	-60	269		48		0.73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I rough Lode		,	,					97		3.72
Trough Lode FU2017 94,290 402,336 156 -60 269 195 198 3 0.59 Trough Lode F02018 94,320 402,336 157 -60 268 94 112 18 3.75 Tap AB2 F02019 94,260 402,320 157 -59 268 Inc 126 132 6 351.30 Tap AB2 F02021 94,240 402,315 157 -56 266 126-80H 130 4 355.88 Tap AB2 F02021 94,230 402,315 157 -52 269 99-80H 121 22 34.91 Trough Lode F02022 94,210 402,309 157 -52 270 0 21 21 1.51 Trough Lode GCPF28069 33.30 401,820 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28089 33.33 401,820 113 90 0								106	117	11	2.96
Trough Lode F02018 94,320 402,336 157 -60 268 94 112 18 3 75 Tap AB2 Trough Lode F02019 94,260 402,336 157 -59 268 1126 113 1.64 3 6.13 Tap AB2 Trough Lode F02010 94,260 402,316 157 -56 266 126 BOH 112 18 3 75 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 161 121 122 34.41 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 161 121 12 16 62.58 Tap AB2 Trough Lode F02022 94,210 402,330 157 -52 260 0 21 21 1.51 0 99 BOH 120 7 5.79 Tap D Sui GCPF28069 33,330 401,820 101 90 0	Tap AB2	E02017	04 200	102 245	150	60	260	170	172	2	0.63
Trough Lode FU2018 94,30 402,30 157 -90 265 123 - BCH 126 3 6.13 Tap AB2 Trough Lode F02019 94,260 402,320 157 -59 268 Inc 126 132 6 351.30 Tap AB2 Trough Lode F02020 94,240 402,316 157 -56 266 126 - BOH 121 22 34.91 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 Inc 108 - 121 12 24 34.91 Trough Lode F02021 94,210 402,309 157 -52 270 66 76 10 0.90 113 - BOH 120 7 5.79 Tap D Sul GCPF28069 93,330 401,820 101 -90 0 1 3 2 0.73 Tap D Sul GCPF28089 93,330 401,820 101 -90 0 4 4 1.63 Tap D Sul GCPF28089 93,35	Trough Lode	F02017	94,290	402,343	100	-00	209	195	198	3	0.59
Trap AB2 Trough Lode F02019 94,260 402,320 157 -59 268 Inc 126 139 13 1.64 Tap AB2 Trough Lode F02020 94,240 402,316 157 -56 266 116c 126 137 1 1.084.43 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 1nc 108 121 121 12 62.58 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 1nc 108 121 1.21 1.57 62.58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 113 2.0.78 75.79 75 79 75 79 75 79 75 79 75 73 73 73 73 73 73 75 74 75 78 75 75 75 75 75 75 75	Tap AB2	E02018	0/ 320	102 336	157	-60	268			18	
Tap AB2 Trough Lode F02019 94,260 402,320 157 -59 268 Inc 126 132 6 351.30 Tap AB2 Trough Lode F02020 94,240 402,316 157 -56 266 126 - BOH 130 4 35.58 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 BOH 121 22 34.91 Trough Lode F02022 94,210 402,309 157 -52 270 0 21 21 1.51 Trough Lode GCPF28064 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93.330 401,828 106 -90 0 1 3 2 0.73 Tap D Sul GCPF28063 93.330 401,828 106 -90 0 4 4 0.63 Tap D Sul GCPF28083 93.350 401,824 113 -90 0 <td>Trough Lode</td> <td>102010</td> <td>94,320</td> <td>402,330</td> <td>157</td> <td>-00</td> <td>200</td> <td></td> <td></td> <td></td> <td></td>	Trough Lode	102010	94,320	402,330	157	-00	200				
Trough Lode PU2019 94,200 402,320 157 -99 268 Init 126 122 1 1,084,43 Tap AB2 Trough Lode F02020 94,240 402,315 157 -56 266 126 - BOH 130 4 35.53 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 Init 126 121 121 62.58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 269 Init 128 121 121 62.58 Tap D Sul GCPF28064 93,310 401,822 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93,320 401,821 101 -90 0 1 3 2 0.73 Tap D Sul GCPF28089 93,330 401,821 113 -90 0 4 4 1.63 Tap D Sul GCPF28089 93,350 401,824 113 -90	Tan AB2										
Tap AB2 Trough Lode F02020 94,240 402,316 157 -56 266 126 BOH 130 4 35.58 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 BOH 121 22 34.91 Trough Lode F02022 94,210 402,315 157 -52 270 0 211 2.11 1.51 Trough Lode F02022 94,210 402,309 157 -52 270 0 21 2.1 1.51 Tap D Sul GCPF28069 93.320 401.82 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93.330 401.82 101 -90 0 4 4 0.63 Tap D Sul GCPF28081 93.330 401.82 107 -90 0 4 4 1.63 Tap D Sul GCPF28095 93.350 401.81 104 -90 0 2		F02019	94,260	402,320	157	-59	268				
Trough Lode F02020 94,240 402,316 137 -56 266 120-BOH 130 4 35.36 Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 99-BOH 121 122 62.58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 100 0.90 Tap D Sul GCPF28068 93,320 401,820 101 -90 0 2 4 2 0.622 Tap D Sul GCPF28080 93,330 401,820 101 -90 0 1 3 2 0.73 Tap D Sul GCPF28081 93,330 401,820 100 -90 0 4 4 1.63 Tap D Sul GCPF28098 93,350 401,828 107 -90 0 4 4 1.63 Tap D Sul GCPF28098 93,350 401,828 107 -90 0 2 8								Inc 126	127	1	1,084.43
Tap AB2 Trough Lode F02021 94,230 402,315 157 -52 269 99 - BOH Inc 108 - BOH 121 22 12 34.91 62.58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.99 Tap D Sul GCPF28064 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28080 93,330 401,852 101 -90 0 1 3 2 0.73 Tap D Sul GCPF28081 93,330 401,815 101 -90 0 4 4 0.63 Tap D Sul GCPF28082 93,330 401,816 100 -90 0 2 7 5 0.82 Tap D Sul GCPF28098 93,350 401,804 19 -90 0 4 4 1.83 Tap D Sul GCPF28096 93,350 401,809 102 -90 0 1		F02020	94 240	402 316	157	-56	266	126 - BOH	130	4	35.58
Trough Lode F02021 94,230 402,315 157 -52 269 Inc 108 120 12 62.58 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 Tap D Sul GCPF28069 93,320 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93,330 401,852 101 -90 0 1 3 2 0.89 Tap D Sul GCPF28081 93,330 401,852 101 -90 0 4 4 0.63 Tap D Sul GCPF28082 93,330 401,815 101 -90 0 4 4 1.63 Tap D Sul GCPF28098 93,350 401,828 107 -90 0 4 4 1.83 Tap D Sul GCPF28096 93,350 401,828 104 90 0 2 8 6 0.87	Trough Lode	1 02020	04,240	402,010	107	00	200		100	-	00.00
Trough Lode F02021 94,230 402,315 157 -52 269 Inc 108-10 120 12 62,58 Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 Tap D Sul GCPF28069 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93,330 401,852 101 -90 0 1 3 2 0.73 Tap D Sul GCPF28081 93,330 401,842 106 -90 0 1 3 2 0.73 Tap D Sul GCPF28093 93,350 401,842 113 -90 0 4 4 1.63 Tap D Sul GCPF28094 93,350 401,842 107 -90 0 4 1 1.44 Tap D Sul GCPF28097 93,360 401,836 112 90 2 8 6	Tap AB2								121	22	34.91
Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 Tap D Sul GCPF28064 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28080 93,330 401,820 101 -90 0 1 3 2 0.89 Tap D Sul GCPF28081 93,330 401,826 106 -90 0 1 3 2 0.73 Tap D Sul GCPF28082 93,330 401,828 106 -90 0 2 7 5 0.82 Tap D Sul GCPF28093 93,350 401,842 107 -90 0 4 4 1.91 Tap D Sul GCPF28096 93,350 401,849 99 0 4 7 3 1.32 Tap D Sul GCPF28096 93,360 401,826 107 -90 0 2 14 11		F02021	94,230	402,315	157	-52	269				
Tap AB2 Trough Lode F02022 94,210 402,309 157 -52 270 66 76 10 0.90 Tap D Sul GCPF28064 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28080 93,330 401,820 101 -90 0 1 3 2 0.89 Tap D Sul GCPF28081 93,330 401,828 106 -90 0 1 3 2 0.73 Tap D Sul GCPF28082 93,330 401,815 101 -90 0 0 4 4 0.63 Tap D Sul GCPF28093 93,350 401,842 107 -90 0 0 4 4 1.63 Tap D Sul GCPF28096 93,350 401,840 99 90 0 4 7 3 1.32 Tap D Sul GCPF28096 93,360 401,82 109 0 2 14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
Trough Lode PD2022 94,210 402,303 157 -52 210 bot 150 100 0.93 Tap D Sul GCPF28064 93,310 401,822 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28089 93,330 401,828 106 -90 0 1 3 2 0.73 Tap D Sul GCPF28081 93,330 401,812 101 -90 0 0 4 4 0.63 Tap D Sul GCPF28093 93,350 401,812 113 -90 0 0 4 4 1.63 Tap D Sul GCPF28094 93,350 401,828 107 -90 0 4 7 3 1.32 Tap D Sul GCPF28095 93,360 401,824 107 -90 0 2 8 6 0.87 Tap D Sul GCPF28098 93,360 401,826 109 -90 0 2 <td< td=""><td>Tap AB2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Tap AB2										
Tap D Sul GCPF28064 93,310 401,852 111 -90 0 2 4 2 0.62 Tap D Sul GCPF28069 93,320 401,820 101 -90 0 1 3 2 0.89 Tap D Sul GCPF28081 93,330 401,828 106 -90 0 1 3 2 0.89 Tap D Sul GCPF28081 93,330 401,810 100 -90 0 4 4 0.63 Tap D Sul GCPF28093 93,350 401,842 113 -90 0 4 4 1.63 Tap D Sul GCPF28094 93,350 401,816 104 -90 0 2 8 6 0.87 Tap D Sul GCPF28099 93,360 401,822 106 -90 1 11 1.44 1.44 Tap D Sul GCPF28108 93,370 401,821 102 -90 0 2 14 12 2.57		F02022	94,210	402,309	157	-52	270				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
Tap D Sul GCPF28082 93,339 401,810 100 -90 0 2 7 5 0.82 Tap D Sul GCPF28093 93,350 401,842 113 -90 0 0 4 4 1.63 Tap D Sul GCPF28094 93,350 401,828 107 -90 0 2 8 6 0.87 Tap D Sul GCPF28096 93,350 401,804 99 -90 0 4 7 3 1.32 Tap D Sul GCPF28097 93,360 401,809 102 -90 0 3 -BOH 14 11 1.45 Tap D Sul GCPF28109 93,370 401,828 109 -90 0 2 14 12 3.87 Tap D Sul GCPF28110 93,370 401,824 102 -90 0 3<-BOH											
Tap D Sul GCPF28093 93,350 401,842 113 -90 0 0 4 4 1.63 Tap D Sul GCPF28094 93,349 401,828 107 -90 0 0 4 4 1.91 Tap D Sul GCPF28095 93,350 401,804 99 -90 0 4 7 3 1.32 Tap D Sul GCPF28099 93,360 401,822 106 -90 0 1 11 10 1.84 Tap D Sul GCPF28099 93,360 401,822 106 -90 0 2 11 9 1.44 Tap D Sul GCPF28109 93,370 401,828 109 -90 0 -8DH 12 12 2.57 Tap D Sul GCPF28119 93,370 401,804 102 -90 0 3-BOH 12 12 1.71 Tap D Sul GCPF28111 93,380 401,824 104 -90 0 3-BOH											
Tap D Sul GCPF28094 93,349 401,828 107 -90 0 0 4 4 1.91 Tap D Sul GCPF28095 93,350 401,804 99 -90 0 4 7 3 1.32 Tap D Sul GCPF28097 93,360 401,809 102 -90 0 3 BOH 14 11 1.45 Tap D Sul GCPF28098 93,360 401,822 106 -90 0 1 11 10 1.84 Tap D Sul GCPF28109 93,370 401,828 109 -90 0 2 14 12 2.57 Tap D Sul GCPF28109 93,370 401,824 102 -90 0 3 BOH 12 12 2.57 Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3 BOH 12 9 5.87 Tap D Sul GCPF28111 93,380 401,822 108				1 1							
Tap D Sul GCPF28095 93,350 401,816 104 -90 0 2 8 6 0.87 Tap D Sul GCPF28096 93,350 401,809 102 -90 0 4 7 3 1.32 Tap D Sul GCPF28098 93,360 401,809 102 -90 0 3 BOH 14 11 1.45 Tap D Sul GCPF28098 93,360 401,822 106 -90 0 1 111 10 1.84 Tap D Sul GCPF28108 93,370 401,822 109 -90 0 2 14 12 2.57 Tap D Sul GCPF28109 93,370 401,804 102 -90 0 3 BOH 12 9 5.87 Tap D Sul GCPF28111 93,380 401,802 108 -90 0 4 BOH 11 7 0.90 Tap D Sul GCPF28112 93,380 401,812 108											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1 1							
Tap D Sul GCPF28097 93,360 401,809 102 -90 0 3 - BOH 14 11 1.45 Tap D Sul GCPF28098 93,360 401,822 106 -90 0 1 11 10 1.84 Tap D Sul GCPF28099 93,360 401,828 109 -90 0 2 11 9 1.44 Tap D Sul GCPF28109 93,370 401,828 109 -90 0 2 14 12 2.57 Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3 - BOH 12 9 5.87 Tap D Sul GCPF28112 93,380 401,798 101 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28112 93,380 401,822 108 -90 0 3 - BOH 14 11 1.50 Tap D Sul GCPF28124 93,390 401,816 106 -90 0											
Tap D Sul GCPF28098 93,360 401,822 106 -90 0 1 11 10 1.84 Tap D Sul GCPF28099 93,360 401,836 112 -90 0 2 11 9 1.44 Tap D Sul GCPF28108 93,370 401,828 109 -90 0 2 14 12 2.57 Tap D Sul GCPF28109 93,370 401,815 105 -90 0 2 14 12 3.87 Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3-BOH 12 9 5.87 Tap D Sul GCPF28112 93,380 401,810 104 -90 0 4-BOH 11 7 0.90 Tap D Sul GCPF28113 93,380 401,822 108 -90 0 3-BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,816 106 -90 0 2-											
Tap D Sul GCPF28099 93,360 401,836 112 -90 0 2 11 9 1.44 Tap D Sul GCPF28108 93,370 401,828 109 -90 0 0 -BOH 12 12 2.57 Tap D Sul GCPF28109 93,370 401,815 105 -90 0 2 14 12 3.87 Tap D Sul GCPF28111 93,380 401,798 101 -90 0 0 BOH 12 12 1.71 Tap D Sul GCPF28112 93,380 401,798 101 -90 0 4 BOH 11 7 0.90 Tap D Sul GCPF28112 93,380 401,822 108 -90 0 1 BOH 14 11 2.78 Tap D Sul GCPF28126 93,390 401,828 110 -90 0 5 BOH 14 2 1.92 Tap D Sul GCPF28126 93,390				401,809				3 - BOH			
Tap D Sul GCPF28108 93,370 401,828 109 -90 0 0 - BOH 12 12 12 2.57 Tap D Sul GCPF28109 93,370 401,815 105 -90 0 2 14 12 3.87 Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3 - BOH 12 9 5.87 Tap D Sul GCPF28111 93,380 401,798 101 -90 0 0 - BOH 12 12 1.71 Tap D Sul GCPF28113 93,380 401,810 104 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28112 93,380 401,822 108 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,828 110 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,804 104 <td< td=""><td>Tap D Sul</td><td></td><td>93,360</td><td>401,822</td><td>106</td><td>-90</td><td></td><td></td><td></td><td></td><td>1.84</td></td<>	Tap D Sul		93,360	401,822	106	-90					1.84
Tap D Sul GCPF28109 93,370 401,815 105 -90 0 2 14 12 3.87 Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3 - BOH 12 9 5.87 Tap D Sul GCPF28111 93,380 401,798 101 -90 0 0 - BOH 12 12 1.71 Tap D Sul GCPF28112 93,380 401,810 104 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28112 93,380 401,822 108 -90 0 1 - BOH 14 13 1.50 Tap D Sul GCPF28126 93,390 401,828 110 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,804 104 -90 0 2 - BOH 14 2 1.92 Tap D Sul GCPF28128 93,400 401,804 104 -90 <td< td=""><td></td><td>GCPF28099</td><td>93,360</td><td>401,836</td><td>112</td><td>-90</td><td></td><td></td><td></td><td></td><td></td></td<>		GCPF28099	93,360	401,836	112	-90					
Tap D Sul GCPF28110 93,370 401,804 102 -90 0 3 - BOH 12 9 5.87 Tap D Sul GCPF28111 93,380 401,798 101 -90 0 0 - BOH 12 12 1.71 Tap D Sul GCPF28112 93,380 401,810 104 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28124 93,380 401,822 108 -90 0 1 - BOH 14 13 1.50 Tap D Sul GCPF28125 93,390 401,828 110 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28126 93,390 401,816 106 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,804 104 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90	Tap D Sul	GCPF28108	93,370	401,828	109	-90	0	0 - BOH	12	12	2.57
Tap D Sul GCPF28111 93,380 401,798 101 -90 0 0 - BOH 12 12 1.71 Tap D Sul GCPF28112 93,380 401,810 104 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28113 93,380 401,822 108 -90 0 1 - BOH 14 13 1.50 Tap D Sul GCPF28124 93,390 401,828 110 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,828 100 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28125 93,390 401,804 104 -90 0 3 7 4 0.88 Tap D Sul GCPF28127 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0	Tap D Sul	GCPF28109	93,370	401,815	105	-90	0		14	12	3.87
Tap D Sul GCPF28112 93,380 401,810 104 -90 0 4 - BOH 11 7 0.90 Tap D Sul GCPF28113 93,380 401,822 108 -90 0 1 - BOH 14 13 1.50 Tap D Sul GCPF28124 93,390 401,828 110 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,816 106 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,816 104 -90 0 3 - 7 4 0.88 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,826 110 -90 0 2<	Tap D Sul	GCPF28110	93,370	401,804	102	-90	0	3 - BOH	12	9	5.87
Tap D Sul GCPF28113 93,380 401,822 108 -90 0 1 - BOH 14 13 1.50 Tap D Sul GCPF28124 93,390 401,828 110 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,816 106 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28127 93,400 401,804 104 -90 0 2 - BOH 14 2 1.92 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0	Tap D Sul	GCPF28111	93,380	401,798	101	-90	0	0 - BOH	12	12	1.71
Tap D Sul GCPF28124 93,390 401,828 110 -90 0 3 - BOH 14 11 2.78 Tap D Sul GCPF28125 93,390 401,816 106 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,804 104 -90 0 3 7 4 0.88 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 14 2 1.92 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28139 93,400 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28139 93,410 401,804 106 -90 0	Tap D Sul	GCPF28112	93,380	401,810	104	-90	0	4 - BOH	11	7	0.90
Tap D Sul GCPF28125 93,390 401,816 106 -90 0 5 - BOH 8 3 1.16 Tap D Sul GCPF28126 93,390 401,804 104 -90 0 3 7 4 0.88 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 14 2 1.92 Tap D Sul GCPF28128 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28130 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,826 110 -90 0 5<	Tap D Sul	GCPF28113	93,380	401,822	108	-90	0	1 - BOH	14	13	1.50
Tap D Sul GCPF28126 93,390 401,804 104 -90 0 3 7 4 0.88 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,400 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 11	Tap D Sul	GCPF28124	93,390	401,828	110	-90	0	3 - BOH	14	11	2.78
Tap D Sul GCPF28126 93,390 401,804 104 -90 0 12 - BOH 14 2 1.92 Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,824 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 111 <td>Tap D Sul</td> <td>GCPF28125</td> <td>93,390</td> <td>401,816</td> <td>106</td> <td>-90</td> <td>0</td> <td>5 - BOH</td> <td>8</td> <td>3</td> <td>1.16</td>	Tap D Sul	GCPF28125	93,390	401,816	106	-90	0	5 - BOH	8	3	1.16
Tap D Sul GCPF28127 93,400 401,798 102 -90 0 2 - BOH 12 10 1.37 Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 12 7 1.08 Tap D Sul GCPF28130 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,792 100 -90 0 3		000000100	02 200	404 004	104	00	0	3	7	4	0.88
Tap D Sul GCPF28128 93,400 401,810 105 -90 0 5 12 7 1.08 Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 3 8 5 </td <td>Tap D Sui</td> <td>GCPF28126</td> <td>93,390</td> <td>401,804</td> <td>104</td> <td>-90</td> <td>0</td> <td>12 - BOH</td> <td>14</td> <td>2</td> <td>1.92</td>	Tap D Sui	GCPF28126	93,390	401,804	104	-90	0	12 - BOH	14	2	1.92
Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,826 110 -90 0 8 12 4 0.92 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 </td <td>Tap D Sul</td> <td>GCPF28127</td> <td>93,400</td> <td>401,798</td> <td>102</td> <td>-90</td> <td>0</td> <td>2 - BOH</td> <td>12</td> <td>10</td> <td>1.37</td>	Tap D Sul	GCPF28127	93,400	401,798	102	-90	0	2 - BOH	12	10	1.37
Tap D Sul GCPF28129 93,400 401,821 108 -90 0 5 13 8 0.62 Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,826 110 -90 0 8 12 4 0.92 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 </td <td></td> <td>GCPF28128</td> <td>93,400</td> <td>401,810</td> <td>105</td> <td>-90</td> <td>0</td> <td>5</td> <td>12</td> <td></td> <td>1.08</td>		GCPF28128	93,400	401,810	105	-90	0	5	12		1.08
Tap D Sul GCPF28130 93,400 401,834 112 -90 0 2 9 7 1.35 Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28139 93,410 401,826 110 -90 0 8 12 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28142 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 -	Tap D Sul	GCPF28129	93,400	401,821	108	-90	0		13	8	0.62
Tap D Sul GCPF28139 93,409 401,826 110 -90 0 2 4 2 1.46 Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28142 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401,822 109 -90 0 1		GCPF28130	93,400	401,834	112	-90		2	9		1.35
Tap D Sul GCPF28140 93,410 401,816 106 -90 0 8 12 4 0.92 Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,804 104 -90 0 11 14 3 1.58 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401 822 109 -90 0 1 7 6 0.84	Tap D Sul	GCPF28139	93,409	401,826	110	-90	0				
Tap D Sul GCPF28141 93,410 401,804 104 -90 0 5 7 2 0.80 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401,822 109 -90 0 1 7 6 0.84	Tap D Sul	GCPE281/0	93/110	401.816	106	_00	0				
Tap D Sul GCPF28141 93,410 401,804 104 -90 0 11 14 3 1.58 Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401 822 109 -90 0 1 7 6 0.84											
Tap D Sul GCPF28142 93,410 401,792 100 -90 0 3 8 5 0.87 Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401,822 109 -90 0 1 7 6 0.84	Tap D Sul	GCPF28141	93,410	401,804	104	-90	0				
Tap D Sul GCPF28143 93,420 401,798 103 -90 0 3 6 3 0.69 Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401,822 109 -90 0 1 7 6 0.84	Tap D Sul	GCPE28142	93 / 10	401 702	100	-90	0				
Tap D Sul GCPF28144 93,420 401,810 106 -90 0 2 - BOH 14 12 2.53 Tap D Sul GCPF28145 93,420 401,822 109 -90 0 1 7 6 0.84	· · · · · · · · · · · · · · · · · · ·										
Tap D Sul GCPE28145 93 420 401 822 109 -90 0 1 7 6 0.84											
	rap D Sui					-30	0				
	Tap D Sul	GCPF28145	93,420	401,822	109	-90	0	10 - BOH	14	4	1.65

Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap D Sul	GCPF28146	93,420	401,834	115	-90	0	1 11	4 13	3 2	0.92 0.77
Tap D Sul	GCPF28147	93,421	401,846	117	-90	0	0	2	2	0.55
Tap D Sul	GCPF28154	93,430	401,840	116	-90	0	0 10	6 13	6 3	1.22 0.73
Tap D Sul	GCPF28155	93,429	401,828	114	-90	0	0 9	6 13	6 4	0.84 0.58
Tap D Sul	GCPF28156	93,430	401,817	111	-90	0	2	4	2	0.66
Tap D Sul	GCPF28157	93,430	401,804	107	-90	0	7	11	4	2.11
Tap D Sul	GCPF28158	93,430	,	104	-90	0	3	7	4	2.50
Tap AB2 Trough Lode	GCRC18797	94,320		180	-60	270	74	80	6	1.38
Tap AB2 Trough Lode	GCRC18798	94,330	402,328	180	-50	270	48	53	5	2.68
Tap AB2 Trough Lode	GCRC18805	94,360	402,326	180	-50	270	45	47	2	1.40
Tap AB2 Trough Lode	GCRC18807	94,360	402,343	181	-60	270	72	77	5	1.06
Tap AB2 Trough Lode	GCRC18814	94,370	402,325	180	-60	270	9	11	2	1.51
Tap AB2 Trough Lode	GCRC18815	94,370	402,338	181	-60	270	27	29	2	0.52
Tap AB2 Trough Lode	GCRC18819	94,380	402,324	180	-60	270	1 9	3 13	2 4	1.42 0.80
Tap AB2 Trough Lode	GCRC18852	94,480	402,331	181	-60	265	11 19 88	14 30 90	3 11 2	0.55 10.43 1.25
Tap AB2 Trough Lode	GCRC18861	94,520	402,330	180	-65	270	35	40	5	3.80
Tap AB2 Trough Lode	GCRC18872	94,560	402,320	180	-61	270	17 70 - BOH	25 96	8 26	2.04 2.25
Tap AB2 Trough Lode	GCRC18875	94,570	402,317	180	-61	271	1 15 57 68 88 - BOH	3 18 61 78 90	2 3 4 10 2	0.85 0.73 1.91 3.49 1.00
Tap AB2 Trough Lode	GCRC18920	94,310	402,326	170	-60	270	39 54 69 90	41 66 87 96	2 12 18 6	0.83 1.24 4.70 0.61
Tap AB2 Trough Lode	GCRC18921	94,310	402,321	170	-50	270	45	60	15	3.82
Tap AB2 Trough Lode	GCRC18923	94,340	402,310	169	-50	270	9	12	3	1.23
Tap AB2 Trough Lode	GCRC18926	94,350	402,317	169	-60	270	4	9	5	3.35
Tap AB2 Trough Lode	GCRC18938	94,430	402,335	169	-60	270	35 64 73	38 66 75	3 2 2	1.85 1.07 1.10

Target	Hole	North	East	RL	Dip	Az	From (m)	To (m)	Width (m)	Gold (g/t)
Tap AB2 Trough Lode	GCRC18971	94,590	402,318	170	-50	270	69 86	75 88	6 2	11.34 0.59
Tap AB1 Trough Lode	GCRC19126	93,815	402,308	161	-50	91	0 44	35 46	35 2	2.37 2.16
Tap AB2 Trough Lode	GCRC19130	94,580	402,294	162	-64	57	31	58	27	1.97
Tap AB2 Trough Lode	GCRC19136	94,550	402,296	160	-51	90	19	25	6	8.18
Tap AB2 Trough Lode	GCRC19137	94,530	402,303	161	-56	90	17	20	3	0.76
Tap AB2 Trough Lode	GCRC19138	94,530	402,299	161	-60	87	28	38	10	1.29
Tap D Sul	GCRC19169	93,420	401,857	121	-60	270	35 - BOH	54	19	2.35
Tap D Sul	GCRC19170	93,420	401,869	123	-60	270	44	61	17	1.41
Tap D Sul	GCRC19171	93,420	401,882	125	-62	270	35 63	41 78	6 15	1.41 1.37
Tap AB2 Trough Lode	GCRC19203	94,250	402,312	157	-52	269	69 75 Inc 82	72 95 88	3 20 6	0.77 9.31 27.37
Tap AB2 Trough Lode	GCRC19204	94,270	402,311	154	-50	270	86 - BOH	96	10	11.83
Tap AB2 Trough Lode	GCRC19205	94,293	402,308	157	-60	270	33 50	39 65	6 15	2.13 6.85
Tap AB2 Trough Lode	GCRC19206	94,293	402,298	157	-60	270	0 26	5 28	5 2	2.05 6.18
Tap AB2 Trough Lode	GCRC19207	94,310	402,300	157	-50	270	16	20	4	2.49
Tap AB2 Trough Lode	GCRC19208	94,310	402,291	158	-50	270	3	6	3	3.36
Tap AB2 Trough Lode	GCRC19209	94,284	402,293	153	-60	270	21	27	6	2.01
Tap AB2 Trough Lode	GCRC19210	94,280	402,304	154	-60	270	50 Inc 56	69 60	19 4	7.23 28.51
Tap AB2 Trough Lode	GCRC19211	94,330	402,304	158	-50	270	3	5	2	4.66
Tap AB2 Trough Lode	GCRC19212	94,330	402,314	157	-60	270	15 23	17 30	2 7	1.64 0.76
Tap D Sul	GCRC19264	93,420	401,855	121	-50	270	33 - BOH Inc 34 Inc 43	60 49 46	27 15 3	12.94 22.71 82.80

All intercepts are reported as downhole intervals using a 0.5 g/t gold lower cut off and no greater than 2 m internal dilution. BOH = Bottom of hole. Holes prefix F and GCRC are reverse circulation drill holes. Holes prefix GCPF are open hole RAB.

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g.	For RC drilling the entire 1m RC samples were obtained and
techniques	cut channels, random chips, or specific	split by an adjustable cone splitter attached to the base of
	specialised industry standard	the cyclone or riffle split separately to 1.5kg – 6.0kg and
	measurement tools appropriate to the	were utilised for both lithology logging and assaying. For
	minerals under investigation, such as	RAB drilling the entire 1m samples were collected and split
	down hole gamma sondes, or	in the sample preparation laboratory.
	handheld XRF instruments, etc.).	For diamond core, half core is measured, logged and then

	These examples should not be taken	cut, crushed and pulverised at the Tucano site sample
	as limiting the broad meaning of sampling.	preparation laboratory.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Samples are split into single meter intervals. Certified standards were inserted every 25th sample and to assess the accuracy and methodology of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. A blank standard was inserted at the start of every batch. Results of the QAQC sampling were assessed on a batch by batch basis and were considered acceptable.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	1m RC samples were obtained by an adjustable cone splitter attached to the base of the cyclone (1.5kg – 6.0kg) and were utilised for both lithology logging and assaying. At the mine exploration sample preparation facility, core samples are dried at 105C, crushed to -8mm then to -2mm and split to 0.9-1kg before being pulverised to 1mm. This sample is quartered cut to between 200-400g before being pulverised to 95% passing 105µm. The final pulp is quartered again to achieve a sample of 100 - 200g and is sent to SGS laboratories in Belo Horizonte for fire assay. At the mine exploration sample preparation facility, the RC
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	A 5.5" diameter face sampling hammer was used for RC drilling. A 3.5' diameter bit is used for open hole RAB drilling. For diamond drilling NQ size core is produced.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	RC recovery was visually assessed, with recovery being excellent except in some wet intervals at the water table. The majority of mineralised intersection results received occurred above the water table. All core is orientated and measured for recovery
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and cone splitter to provide uniform sample size. The cone splitter was cleaned at the end of every rod and the cyclone cleaned at the completion of every hole.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential	Sample recoveries for RC holes were high within the mineralised zones. No significant bias is expected.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource	Lithology, alteration, veining, mineralisation and weathering were logged from the RC chips and stored in Datashed. Chips from selected holes were also placed in chip trays and stored in a designated building at site for future reference.

	estimation, mining studies and	All core was orientated and geotechnically logged and
	metallurgical studies.	recorded.
	Whether logging is qualitative or quantitative in nature. Core (or	All logging is qualitative except for density and recovery. All core photography has been completed shortly after being
	costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	received at the core yard and always prior to cutting. All drill holes are logged in full.
Sub-sampling techniques		Core holes and half core sampled from cut core.
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter or riffle splitter to produce samples in the 1kg to 6kg range. For open hole RAB entire 1m samples are collected and then riffle split. Once collected the sample is dried, crushed to -2mm and split at the site sample preparation lab down to approximately 1kg prior to pulverisation.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The 1 kg sample is then pulverised to 1mm and quarter cut to between 200 and 400g. This sample is then pulverised to 95% passing 105µm and quarter cut to a 100-200g sample to send to SGS or to the mine chemical lab for analysis.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Certified standards and blanks were inserted every 25th sample to assess the accuracy and methodology of the external laboratory (SGS), and field duplicates were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. At Tucano field duplicates were taken for diamond core but not for RC. Laboratory duplicates (sample preparation split) were completed every 20th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Duplicate samples were also sent to a different lab (ACME Laboratories) for analysis.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Filed duplicate samples are collected every 20 th samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (1kg to 6kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style, the width and continuity of the intersections, the sampling methodology.
		Field duplicates of diamond core have routinely been collected to ensure monitoring of the sub-sampling quality. Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a course gold deposit.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	All resource or exploration holes (prefix FD or F) gold assaying completed by external certified laboratories (SGS in Belo Horizonte and ACME laboratories) and using a 30g charge for fire assay analysis with an AAS finish. This technique is industry standard for gold and considered appropriate. All grade control hole (prefix GC) gold assaying completed at the non-certified Tucano mine site chemical laboratory using similar fire assay analysis. Selected Screen fire analysis was performed on selected intervals where coarse gold was observed. The results reported in this release were assayed at the mine site chemical laboratory and will be duplicated at SGS to ensure
	For geophysical tools, spectrometers,	repeatability. Geophysical tools not used.
	r or goophysical tools, spectrometers,	

	handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 20th sample to assess the precision of assaying. Evaluation of both the Beadell submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows an overall mean bias of less than 5% with no consistent positive or negative bias noted. Duplicate assaying show high levels of correlation (linear correlation >0.96) and no apparent bias between the duplicate pairs. Field duplicate sample show marginally acceptable levels of correlation (0.89 for the SGS data set, 0.96 for the Ultratrace and MinAnalytical data set but 0.61 for the KalAssay data set) and no relative bias. Each analysis batch (approx. 150 samples) is checked to ensure that the standards fall within the accepted levels of standard deviation. Where any standard exceeds 3 standard deviations or where more than one standard falls between 2 and 3 standard deviations, the entire batch is resubmitted for analysis.
	The verification of significant intersections by either independent or alternative company personnel.	The high grade intersections of core and RC have been observed by several senior company personnel with extensive experience in similar gold deposit styles).
	The use of twinned holes.	Diamond twin holes have been drilled previously showing what is considered to be normal variations in Orogenic gold mineralisation.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological logging information is entered directly into Logchief and synchronised with the Datashed database. Other field data (e.g. sampling sheets, downhole surveys etc.) are entered into excel spreadsheets formatted for Datashed importation. Lab assay reports are directly imported into Datashed along with all QAQC data and metadata. Data importation is done by Maxwell Geoservices staff under contract by Beadell Resources. All data loading procedures have been documented by Maxwell Geoservices.
	Discuss any adjustment to assay data.	Data below the detection limit is defined with a negative value, e.g. <0.01 = -0.01.
data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in	Beadell drill hole collar locations were picked up by site- based authorized surveyors using Total Station Leica 407, calibrated to a base station (expected accuracy of 20mm).
	Mineral Resource estimation.	Downhole surveying was measured by the drilling contractors using a Reflex Gyro Downhole Survey Instrument for RC holes. Shallow RC holes were picked up at the collar and 2 points on the rod string using Total Station. Grade control RC holes less than ~50m depth are not down hole surveyed.

Specification of the grid system used.	The grid system is SAD 69 Zone 22N.
Quality and adequacy of topographic control.	Beadell Brasil Ltda Survey Staff generated a digital terrain model (DTM) from Total Station surface pickups of the Tucano deposit.
Data spacing for reporting of Exploration Results.	Nominal drill hole spacing is 12m (E) by 10m (N) for grade control and a nominal 20m (E) x 40m (N) spacing for resource definition. Exploration drill spacing typically is done at 40m (E) x 80m (N) or greater.
Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred, Indicated and Measured Mineral resources under the 2012 JORC code.
	No sample compositing has been applied in the field within the mineralised zones.
Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The majority of drilling is orientated east-west at Tucano with a ~60 degree dip, which is roughly perpendicular to the strike of the mineralisation. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or west at the point of intersection.
If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	In areas of higher grade control drilling density, sectional interpretation of 12m spaced holes on 10m spaced lines shows a very uniform mineralised zone both along strike and down dip. The drill orientation is as close to normal to the strike of the body as possible and therefore the drill hole to mineralisation is not considered to have introduced a sampling bias. Due to the anastomosing nature of the mineralised structures varying from steeply west dipping to steeply east dipping, downhole intervals are not necessarily representative of true widths and will vary on a hole by hole basis depending on whether the structure is dipping east or west at the point of intersection.
The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Macapa via the company contracted Taxi driver, who then also delivers the samples directly to TAM airlines cargo dispatch facility for delivery to Belo Horizonte. Sample submission forms are sent with the samples as well as emailed to the laboratory, and are used to keep track of the sample batches.
The results of any audits or reviews of sampling techniques and data.	A site visits was completed in 2012 (Cube Consulting) to review sampling procedures and grade control practices. This visit concluded the sampling to be at an industry standard, and of sufficient quality to carry out a Mineral Resource Estimation. A similar audit was completed in 2015 by independent consultants.
	control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. The measures taken to ensure sample security. The results of any audits or reviews of

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number,	The Tucano Mine Corridor deposits reside in tenement
tenement and	location and ownership including	851.676/1992, centrally located within the northern state of
land tenure	agreements or material issues with	Amapa, Brazil. The current registered holder of the
status	third parties such as joint ventures,	tenements is Beadell Brasil Ltda.

	partnerships overriding reveltion	
	partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Existing mining concession owned 100% by Beadell Resources Ltd for the Tucano deposits.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Beadell Brasil Ltda acknowledges the previous operator MPBA for the initial discovery of gold at Tucano.
Geology	Deposit type, geological setting and style of mineralisation.	The Tucano deposits are structurally controlled orogenic lode type gold deposit hosted within a Banded Iron Formation unit in contact with a Clastic quartz biotite schist. The Lodes are characterised by shear parallel disseminated pyrite and pyrrhotite mineral assemblages and generally exhibit a strong oxidation profile in the regolith without any secondary dispersion other than colluvial deposits. The Neo Lode is a new style of gold mineralisation hosted solely in the clastic unit east of the main BIF sequence. The Tap D deposits are hosted in a carbonate unit west of the main BIF sequence.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	See Table 1
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	In the reporting of exploration results, un-cut grades are reported. The lower cut-off limit is considered to be 0.5g/t for the reporting of drill hole intercepts with no more than 2 m downhole internal dilution. Intercepts are determined using a weighted average over the length of the intercept.
	results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	In the instance where aggregate intercepts include shorter lengths of higher grade material, the total interval is stated first followed by the word "including", then a listing of the contained shorter high grade intercepts.
	The assumptions used for any reporting of metal equivalent values	No metal equivalents are used at Tucano.

	should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	The drilling was designed to intersect the mineralisation at an angle that is roughly perpendicular to the overall strike. The mineralised intervals are generally much wider than the minimum sample interval of 1m. At TapAB Trough Lode the mineralisation is subvertical but anastomoses to steeply east and steeply west dipping. True width generally vary between 40-60% of the reported downhole interval although this varies between each hole. At Tap D Sul down holes intervals approximate true widths.
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	All drill intersections are stated as down hole lengths. Due to the anastomosing nature of the mineralisation at Tap AB Trough lode varying from steeply east to steeply west dipping it is unreliable to try and confidently state a true width for each drill hole intercept.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See diagrams in main body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All the significant results greater than 0.5 g/t gold over at least 2m downhole have been reported in Table 1 and Table 2.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Tucano results are from an active mining area where open pit mining is in progress. Reconciliation has been verified by mill metallurgical balance based on models using the same drilling method for results.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	The Tucano lodes remain open at depth and along strike in most cases and contain numerous outlying intersections that will require follow up drilling. Several diagrams have been included to highlight this aspect.