

28 September 2016

LOMA BONITA DELIVERS THICK HIGH GRADE GOLD INTERCEPT

Highlights:

- Drill hole MDPC-096 intersects <u>67.1m @ 1.56g/t Au & 21g/t Ag</u> from surface, within the oxide zone, including:
 - 25.9m @ 1.31g/t Au & 17g/t Ag from 3.0m; and
 - > 25.9m @ 2.40g/t Au & 23g/t Ag from 36.6m
- Thickest and highest grade part of Loma Bonita gold zone remains open to the east
- Diamond core drilling will test beneath the high grade zone for depth extensions and feeders, within both the oxide and sulphide zones
- Mineral resource estimate for Loma Bonita to commence following completion of drill program
- Additional core samples will be collected for advanced metallurgical testing of Loma Bonita mineralisation

Azure Minerals Limited (ASX: AZS) ("Azure" or "the Company") is pleased to advise that drilling at the Loma Bonita prospect continues to deliver significant intercepts of gold mineralisation.

Azure's Managing Director, Tony Rovira said: "Drilling continues to expand the footprint of the Loma Bonita mineralised zone with significant widths of gold mineralisation intersected in recent holes.

"The high grade zone hosted within the widest part of Loma Bonita has potential for depth extensions and feeder zones. We will shortly be mobilising the diamond rig to test these targets and also to drill the open-ended high grade mineralisation to the east of hole MDPD-096.

"The thick zone of oxide gold mineralisation, sometimes in excess of 100m, contains gold grades similar to or greater than many of the open pit heap leach gold mines currently operating in northern Mexico. Based upon the excellent gold recoveries achieved from our earlier metallurgical test work (ASX: 14 July 2016), this augurs well for the definition of a substantial oxide gold deposit at Loma Bonita, which will be a very positive addition to the Mesa de Plata silver deposit."

DETAILS OF LOMA BONITA DRILLING

To date 14 reverse circulation (RC) holes and 12 diamond core holes have been drilled into and around the Loma Bonita gold-silver discovery (see Figure 1). Significant gold and silver mineralisation has been intersected over the 400m north-south length of the Loma Bonita ridge and up to 150m east-west at the southern end of the zone.

Mineralisation is constrained to the west by erosion into the arroyo (valley) and remains open to the east and south where the topography increases in elevation. The greatest thicknesses of gold mineralisation occur in the southern and eastern parts of the drill-tested area. Gold grades and thicknesses tend to increase towards the south whereas silver grades increase towards the north.

Large thicknesses of gold mineralisation, in some holes in excess of 100m, have been intersected in the southern part of Loma Bonita (see Table 1). The thickness and grade of the gold mineralisation is similar to or greater than other currently operating open pit, heap leach gold mining operations in northern Mexico (for further information on this comparison, see AZS conference presentation released to the ASX 12 September 2016 on www.azureminerals.com.au).

Drilling to date has demonstrated the presence of a zone containing consistent high gold grades within the overall mineralised zone, potentially with dimensions in excess of 150m x 100m and with significant thickness. Drill intercepts from this zone include:

MDPC-089	49.5m @ 1.59g/t Au from 54.0m
MDPC-090	30.0m @ 1.56g/t Au from surface
MDPC-096	67.1m @ 1.56g/t Au from surface
MDPD-011	18.5m @ 1.57g/t Au from surface
MDPD-012	48.0m @ 2.68g/t Au from 23.0m
MDPD-020	14.0m @ 1.59g/t Au from surface

This zone may represent the upper part of a high grade feeder system and has potential for significant depth extensions. Further diamond core drilling will be undertaken to assess this potential.

Drilling has been undertaken on a 50m x 50m spacing on eight 50m-spaced section lines. Approximately 10 holes remain to be drilled in the current program which is considered sufficient to complete definition of the lateral extent of the mineralised zone to a depth of approximately 100m and to assess the internal continuity of the mineralisation.

The RC rig was recently relocated from Loma Bonita to the Mesa de Plata deposit to complete the infill drilling program to enable a resource upgrade. This will allow time to receive and evaluate the Loma Bonita assay results and refine the final design for the remainder of the drilling program.

The RC rig, together with the diamond rig which is currently completing a hole at Cerro San Simon, will then be mobilised back to Loma Bonita to complete the drill-out.

Azure intends to commence a mineral resource estimate of the Loma Bonita mineralised system when the current drilling program has been completed.

Additionally, diamond and RC drill samples will be collected for further metallurgical tests to follow up the excellent results achieved from the initial Loma Bonita metallurgical testwork (ASX: 14 July 2016). Studies will include testing combined Loma Bonita and Mesa de Plata samples to simulate a co-treatment production scenario.

	DEPT	H (m)	INTERCEPT	GRADE			
HOLE NO	FROM	то	LENGTH (m)	Au (g/t)	Ag (g/t)		
REV	REVERSE CIRCULATION DRILL HOLES						
MDPC-089*	54.0	103.5	49.5	1.59	29		
which includes	54.0	88.5	34.5	2.03	34		
MDPC-090*	0.0	111.0	111.0	0.81	18		
which includes	34.5	64.5	30.0	1.56	15		
MDPC-091	15.2	118.9	103.6	0.41	16		
MDPC-092	0.0	39.6	39.6	0.31	21		
and	77.7	117.3	39.6	0.48	14		
MDPC-093		No się	nificant mineralised	l intercepts			
MDPC-094	No significant mineralised intercepts						
MDPC-095		No significant mineralised intercepts					
MDPC-096	0.0	67.1	67.1	1.56	21		
which includes	3.0	28.9	25.9	1.31	17		
and	36.6	62.5	25.9	2.40	23		
MDPC-097	0.0	15.2	15.2	0.61	35		
MDPC-098	105.2	129.6	24.4	0.72	13		
MDPC-099	30.5	51.8	21.3	0.49	18		
and	80.8	86.9	6.1	1.37	20		
MDPC-099B	41.1	54.8	13.7	0.45	16		
and	105.2	121.9	16.7	0.63	15		
MDPC-100	94.5	109.7	15.2	1.37	11		
which includes	94.5	106.7	12.2	1.63	10		
MDPC-101		Assays pending					
MDPC-102		Assays pending					
* Results for these holes p	* Results for these holes previously reported (ASX: 25 August 2016)						

Table 1: Significant gold and silver intercepts from RC drilling at Loma Bonita¹

¹ See attached JORC Table 1 for calculation and reporting of mineralised intervals

Figure 1: Drill hole location plan for Loma Bonita

Level 1, 34 Colin Street, West Perth, Western Australia, 6005 | T: +61 8 9481 2555 | F: +61 8 9485 1290 www.azureminerals.com.au | ABN: 46 106 346 918 | ASX:AZS

Figure 2: Cross section A-A' through Loma Bonita gold zone (see Figure 1 for location)

EXPLORATION DRILLING

Cerro San Simon and Cerro Enmedio

Precious and base metal targets have been identified at Cerro San Simon and Cerro Enmedio by surface geochemical sampling, geological mapping and the Induced Polarisation (IP) survey.

Diamond drilling is testing these prospects with hole MDPD-025 completed and MDPD-035 in progress at Cerro San Simon and MDPD-029, 032, 033 and 034 completed at Cerro Enmedio.

BACKGROUND

The Mesa de Plata Silver Deposit and the Mesa de Plata Norte prospect are located on the Company's Alacrán Project, 10 kilometres to the southeast of the Cananea Copper Mine in Sonora, Mexico. The Loma Bonita Gold Prospect is located 200 metres to the east of the Mesa de Plata Silver Deposit.

Azure acquired the rights to the Alacrán Project in December 2014 through its fully owned Mexican subsidiary Minera Piedra Azul S.A. de C.V. Azure signed an Agreement with Minera Teck S.A. de C.V. ("Teck"), the Mexican subsidiary of Teck Resources Limited to acquire 100% of the property, subject to an underlying back-in right retained by Teck and a 2% NSR retained by Grupo Mexico. Teck Resources Limited is Canada's largest diversified resource company. Grupo Mexico is Mexico's largest and one of the world's largest copper producers.

HOLE No.	EAST (mE)	NORTH (mN)	ELEVATION (mASL)	AZIMUTH	DIP	TOTAL DEPTH (m)	LOCATION
MDPC-089	572557	3415058	1,639	000	-90	189.0	Loma Bonita
MDPC-090	572619	3415083	1,636	000	-90	149.4	Loma Bonita
MDPC-091	572605	3415046	1,654	000	-90	166.1	Loma Bonita
MDPC-092	572652	3415023	1,649	000	-90	199.6	Loma Bonita
MDPC-093	572502	3415183	1,585	000	-90	192.0	Loma Bonita
MDPC-094	572510	3415075	1,613	000	-90	204.2	Loma Bonita
MDPC-095	572465	3415260	1,573	000	-90	185.9	Loma Bonita
MDPC-096	572677	3415070	1,625	000	-90	161.5	Loma Bonita
MDPC-097	572532	3415280	1,580	000	-90	170.7	Loma Bonita
MDPC-098	572518	3414972	1,666	000	-90	189.0	Loma Bonita
MDPC-099	572586	3414996	1,656	000	-90	179.9	Loma Bonita
MDPC-100	572541	3415011	1,653	000	-90	172.2	Loma Bonita
MDPC-101	572441	3415317	1,557	000	-90	143.3	Loma Bonita
MDPC-102	572469	3415409	1,568	000	-90	152.4	Loma Bonita

Table 2: RC drill hole information for Loma Bonita

HOLE No.	EAST (mE)	NORTH (mN)	ELEVATION (mASL)	AZIMUTH	DIP	TOTAL DEPTH (m)	LOCATION
MDPD-006	572897	3414998	1,631	270	-80	539.0	Puerto del Oro
MDPD-007	572512	3415236	1,587	000	-90	165.0	Loma Bonita
MDPD-008	572517	3415399	1,566	290	-60	213.0	Loma Bonita
MDPD-009	572341	3415496	1,547	290	-60	200.2	Loma Bonita
MDPD-010	572252	3415546	1,548	290	-60	172.0	Loma Bonita
MDPD-011	572542	3415175	1,602	000	-90	149.9	Loma Bonita
MDPD-012	572572	3415109	1,627	000	-90	150.0	Loma Bonita
MDPD-013	571925	3415572	1,505	000	-90	28.0	Mesa de Plata
MDPD-014	572014	3415446	1,526	000	-90	65.0	Mesa de Plata
MDPD-015	571960	3415653	1,475	110	-60	80.0	Mesa de Plata
MDPD-016	572485	3415298	1,578	000	-90	200.8	Loma Bonita
MDPD-017	573038	3415273	1,580	000	-90	150.0	Puerto del Oro
MDPD-018	573093	3415074	1,589	000	-90	330.0	Puerto del Oro
MDPD-019	572635	3414985	1,644	000	-90	201.3	Loma Bonita
MDPD-020	572528	3415122	1,605	000	-90	201.0	Loma Bonita
MDPD-021	572592	3415150	1,609	000	-90	150.0	Loma Bonita
MDPD-022	572456	3415361	1,574	000	-90	150.0	Loma Bonita
MDPD-023	571715	3415933	1,426	000	-90	102.0	Mesa de Plata Norte
MDPD-024	571760	3415948	1,421	000	-90	100.0	Mesa de Plata Norte
MDPD-025	573733	3413995	1,712	210	-70	175.15	Cerro San Simon
MDPD-026	571747	3415998	1,412	000	-90	50.0	Mesa de Plata Norte
MDPD-027	571737	3416043	1,411	000	-90	50.0	Mesa de Plata Norte
MDPD-028	571647	3415977	1,420	000	-90	50.0	Mesa de Plata Norte
MDPD-029	573006	3413799	1,662	090	-75	378.1	Cerro Enmedio
MDPD-030	571705	3416002	1,404	000	-90	50.0	Mesa de Plata Norte
MDPD-031	572268	3415592	1,505	110	-45	315.15	Loma Bonita
MDPD-032	572900	3414298	1,612	300	-60	319.65	Cerro Enmedio
MDPD-033	572930	3414000	1,648	270	-70	300.6	Cerro Enmedio
MDPD-034	573200	3414190	1,661	000	-90	376.25	Cerro Enmedio
MDPD-035	573675	3414149	1,791	000	-90	In progress Cerro San Simon	

Table 3: Diamond drill hole information

-ENDS-

For further information, please contact:

Tony Rovira Managing Director Azure Minerals Limited Ph: +61 8 9481 2555 Media & Investor Relations Michael Weir / Richard Glass Citadel-MAGNUS Ph:+61 8 6160 4903

or visit <u>www.azureminerals.com.au</u>

Information in this report that relates to Exploration Results is based on information compiled by Mr Tony Rovira, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Rovira is a full-time employee and Managing Director of Azure Minerals Limited. Mr Rovira has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Rovira consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this report that relates to previously reported Exploration Results has been crossedreferenced in this report to the date that it was reported to ASX. Azure Minerals Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcements.

Appendix

JORC Code, 2012 Edition – Table 1 Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 Diamond core and Reverse Circulation (RC) drilling is being undertaken on the Alacrán Project. Initial drill hole collar locations were determined by hand-held GPS. All diamond drill holes were surveyed for down-hole deviation, with surveys undertaken at 30m intervals and at bottom of hole. No downhole surveys were undertaken in the RC drill holes. Drill core was sampled at 0.15m to 1.5m intervals guided by changes in geology. RC drilling uses 10 foot long rods (=3.048m). Two samples were collected per rod (ie each sample length = 1.524m). All RC samples were dry. Samples for each RC drill hole were collected by passing through a Jones riffle splitter over 1.5m intervals and sent for assay. Samples preparation was undertaken at Acme Laboratories (a Bureau Veritas Group company) in Hermosillo, Sonora., Mexico. Samples were weighed, assigned a unique bar code and logged into the Acme tracking system. Samples were dried and each sample was fine crushed to >70% passing a 2 mm screen. A 250g split was pulverised using a ring and puck system to >85% passing 75 micron screen. Envelopes containing the 250g sample pulps were sent via courier to the Acme laboratory in Vancouver, Canada for analysis. The analytical techniques for all elements (other than gold) initially involved a four-acid digest followed by multi-element ICP-MS analysis. This technique is considered a total digest for all relevant minerals. Following the four-acid digest, the analytical method used was MA300 (for silver and base metals by ICP-MS). Fire Assay method FA430 was used for gold. Over-limit assays were re-analysed by MA370 (by ICP-ES for base metals grading >1%) and FA530 (by fire assay with gravimetric finish for silver grading >200ppm and gold grading >10ppm).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Diamond drilling was HQ-size (63.5mm diameter) core from surface. Drill core was not orientated. Drilling technique for all holes was reverse circulation percussion using a face-sampling hammer. Drill hole diameter was 5 ¹ / ₄ " (133mm).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Drill core was reconstructed into continuous runs. Depths were measured from the core barrel and checked against marked depths on the core blocks.

		-
	Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were logged and recorded in the database. Sample recoveries from the cored holes were high with >85% of the drill core having recoveries of >90%. There is no observable relationship between core recovery and grade, and therefore no sample bias. RC samples were visually checked for recovery, moisture and contamination and notes made in the logs. RC recoveries were visually estimated from volume of sample recovered. All sample recoveries were estimated to be above 90% of expected. There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Detailed core logging was carried out with recording of weathering, lithology, alteration, veining, mineralisation, structure, mineralogy, RQD and core recovery. Drill core was photographed, wet and without flash, in core trays prior to sampling. Each photograph includes an annotated board detailing hole number and depth interval. All holes were logged in full. Geological logging was carried out on all RC drill holes, but no geotechnical data has been recorded (or is possible to be recorded due to the nature of the sample). Logging of RC chips recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. All holes were logged in full. RC chips are stored in plastic RC chip trays. When completed, each plastic chip tray was photographed.
		Mineral Resource estimate.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Azure sub-samples drill core by cutting the core in half (with a wet diamond saw blade) along the core axis to prepare a ½-core sample. The ½-core sub-sample is then wet cut along the core axis to prepare a ¼-core sub- sample for laboratory dispatch. The second half of core and residual ¼ core is retained in core trays and may be used for further testwork. All RC samples were dry. Samples for each RC drill hole were collected by passing through a Jones riffle splitter over the 1.524m (= 5 foot) intervals and sent for assay. The sample collection and preparation for RC and core samples followed industry best practice. Samples were prepared at the Acme laboratories in Hermosillo or Chihuahua, Mexico. Samples were weighed, assigned a unique bar code and logged into the Acme tracking system. The sample was dried and the entire sample was fine crushed to >70% passing a 2 mm screen. A 250g split was pulverised using a ring and puck system to >85% passing 75 micron screen. Envelopes containing the 250g pulps were sent via courier to the Acme laboratory in Vancouver. Certified Reference Standards, replicate samples, pulp duplicate samples, and blank samples were routinely inserted alternately at intervals of every 10 samples, and also immediately following visually identified mineralised intercepts to provide assay quality checks. For sub sampling and assay quality control monitoring Azure:

	1	
		 Submits replicate DCD ¼-cores anonymously to the laboratory in order to monitor the precision of this sub sample type.
		• Instructs the laboratory to collect and assay replicates of pulp samples in order to monitor the precision of the pulp material dispatched for assay.
		• Submits known grade value pulp references anonymously to the laboratory in order to monitor the accuracy of grades reported.
		• Submits a nominal barren 'blank' samples anonymously to the laboratory in order to monitor potential cross contamination between samples during sample preparation.
		The sample sizes are considered appropriate to the grain size of the material being sampled.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical techniques for all elements (other than gold) initially involved a four-acid digest followed by multi-element ICP-MS analysis. This technique is considered a total digest for all relevant minerals.
	the analysis including instrument make and model, reading times, calibrations factors applied and their	Following the four-acid digest, the analytical method used was MA300 (for silver and base metals by ICP- MS). Fire Assay method FA430 was used for gold.
	derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie	Over-limit assays were re-analysed by MA370 (by ICP-ES for base metals grading >1%) and FA530 (by fire assay with gravimetric finish for silver grading >200ppm and gold grading >10ppm).
	lack of bias) and precision have been established.	Azure implemented industry standard QAQC protocols to monitor levels of accuracy and precision.
		Internal laboratory control procedures comprised duplicate sampling of randomly selected assay pulps, as well as internal laboratory standards and blanks.
		Azure routinely inserted Certified Reference Standards, replicate samples, duplicate samples, and blank samples at alternate sample intervals to provide assay quality checks. Review of the standards, duplicates and blanks are within acceptable limits.
		No geophysical or portable analysis tools were used to determine assay values.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	Senior technical personnel from the Company (Project Geologist & Exploration Manager) and an independent technical consultant have inspected the drilling, sampling procedures and significant intersections.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected by employees of the Company at the project site. All measurements and observations were recorded onto hard copy templates and later transcribed into the Company's divital
	Discuss any adjustment to assay data.	database. Digital data storage, verification and validation is managed by an independent data management company.
		No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mingral Besource	Drill hole collar locations were determined by hand- held GPS.
	estimation. Specification of the grid system used.	Final drill hole collar locations will be surveyed by a licensed surveyor using a two frequency differential GPS with accuracy of +/-3cm.
	Quality and adequacy of topographic control.	

Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 All drill holes were surveyed for down-hole deviation, with surveys undertaken at 30m intervals and at bottom of hole. The grid system used is NAD27 Mexico UTM Zone 12 for easting, northing and RL. Drill hole spacing is variable however a pattern of 50m x 50m has commenced. At this time, data spacing and distribution are not sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource estimation procedure. No composite samples were collected.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Geological controls and orientations of the mineralised zone are unknown at this time and therefore all mineralised intersections are reported as "intercept length" and may not reflect true width. No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Assay samples were placed in poly sample bags, each with a uniquely numbered ticket stub from a sample ticket book. Sample bags were marked with the same sample number and sealed with a plastic cable tie. Samples were placed in woven polypropylene "rice bags" and a numbered tamper-proof plastic cable tie was used to close each bag. The rice bags were delivered by company personnel directly to the Acme laboratory for sample preparation. The numbers on the seals were recorded for each shipment. ACME audited the arriving samples and reported any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All digital data is subject to audit by the independent database manager.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Alacrán Project comprises 22 mineral concessions 100% owned by Minera Teck SA de CV, a subsidiary of Teck Resources Limited.

		CLAIM	FILE	TITTLE	HECTARES
		Hidalgo	1794	166374	99.00
		Hidalgo 2	1796	166369	99.00
		Hidalgo 3	1797	166368	99.00
		Hidalgo 4	1798	166366	99.00
		Hidalgo 5	1799	166370	99.00
		Hidalgo 6	1800	166371	. 99.00
		Hidalgo 7	1801	166373	99.00
		Hidalgo 8	1802	166372	99.00
		Hidaigo 9	1803	1003/5	99.00
		Kino 2	1007	166313	100.00
		Kino 4	100/	166314	100.00
		Kino 4	1000	166315	100.00
		Kino 9	1893	166316	100.00
		Kino 10	1894	166317	100.00
		Kino 10	1895	166318	100.00
		Kino 15	1899	166365	100.00
		Kino 16	1800	166367	100.00
		San Simón	1894	166376	100.00
		San Simón 2	1895	166377	100.00
		FL Alacrán	F 4 1 3/1187	201817	3 442 36
		TOTAL SURFACE	1.4.1.0/ 1102	20101/	5,433,36
		TOTALOONIALE			3,433.30
		Azure Minerals has an Optic ownership of these concessi million over four years, subj right to buy back up to 65%	on to acqu ons by sp ject to Tec ownershi	ire 100 ending k havir p.	% US\$5 1g a one-off
		A 2% Net Smelter Royalty i	is held by	Grupo	Mexico.
		The tenements are secure an There are no known impedin to operate in the area.	nd are in g ments to c	ood sta btainin	nding. g a licence
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The project area has a short commercial mining and sma dating back to the early 20 th shortly after the start of the 1910. After the Revolution of property was explored intern	history of all-scale an century, v Mexican I ended in the mittently.	industr tisanal which e Revolut he 1920	ial-scale mining nded ion in i's, the
		The Anaconda Copper Mini have done some exploration property prior to the late 190 work has been located but h	ng Compa , includin 50's. Data as yet to b	any is k g drillir relating e revie	nown to ng, on the g to this wed.
		Between 1969 and the early Recursos Minerales (Mexic: carried out occasional explo drilling 6 holes in 1970 and surveys over the Palo Seco a 1981.	1980's, th an Geolog ration pro undertaki and La Mo	ne Cons ical Sur grams, ng geop prita pro	ejo de rvey) including ohysical ospects in
		Grupo Mexico acquired the completed their drilling. Gr additional 26 holes on the pr first phase was done in 1991 phase was done in 1997 and	project af rupo Mexi roject in tv l (24 holes l 1998 (tw	ter the (co drille wo phas s) and the o holes)	CRM ed an ses. The he second).
		Minera Teck S.A. de C.V., a Teck Resources Limited acc and undertook limited surface	a Mexican quired the ce explora	subsid propert tion.	iary of y in 2013
		Azure Minerals acquired the December 2014 through its subsidiary company Minera	e rights to fully own Piedra Az	the pro ed Mex zul SA o	ject in ican de CV.
Geology	Deposit type, geological setting and style of	Various styles of mineralisa	tion occur	on the	property.
	mineralisation.	Epithermal zones, veins, bre silver, lead, zinc, copper and	eccias and d gold in v	stockw olcanic	orks host lastic rocks

		(Mesa de Plata, Loma Bonita, Cerro San Simon, Cerro Enmedio and Palo Seco).
		Secondary copper oxide and chalcocite mineralisation occur in volcanic rocks (La Morita and Cerro Alacrán).
		Primary copper mineralization is hosted in porphyry rocks (Cerro Alacrán).
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to figures and tables in the report which provide all relevant details.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade	All reported mineralised intervals have been length- weighted. No top cuts have been applied.
	grades are usually Material and should be stated.	Overall mineralised intervals were calculated using a lower grade cut-off of 0.2g/t Au.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation	High grade mineralised intervals were calculated using a grade cut-off of 1.0g/t Au.
	should be stated and some typical examples of such aggregations should be shown in detail.	No metal equivalencies are reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Geological controls and orientations of the mineralised zones are unknown at this time and therefore all mineralised intersections are reported as "intercept length" and may not reflect true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the accompanying report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The Company believes that the ASX announcement is a balanced report with all material results reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement refers to previous exploration results including geophysics, geochemistry and geology.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological	Further work to better understand the mineralisation systems in the project area will be determined upon a full analysis and interpretation of results.

interpretations and future drilling areas, provided this information is not commercially sensitive	
information is not commercially sensitive	

Level 1, 34 Colin Street, West Perth, Western Australia, 6005 | T: +61 8 9481 2555 | F: +61 8 9485 1290 www.azureminerals.com.au | ABN: 46 106 346 918 | ASX:AZS