

FINAL DRILLING UPDATE CERRO SAN SIMON AND CERRO DE ENMEDIO

KEY POINTS:

- Diamond drilling intersected significant copper, gold and silver mineralisation
- Silicification, brecciation, alteration and sulphide mineralisation identified, considered typical of high sulphidation epithermal systems
- Epithermal system extends 1,500m northwest to Loma Bonita and Mesa de Plata gold and silver deposits

Azure Minerals Limited (ASX: AZS) ("Azure" or "the Company") is pleased to advise that final assays have been received from drilling at the Cerro San Simon and Cerro de Enmedio prospects, with results demonstrating several significant intercepts of copper, gold and silver mineralisation.

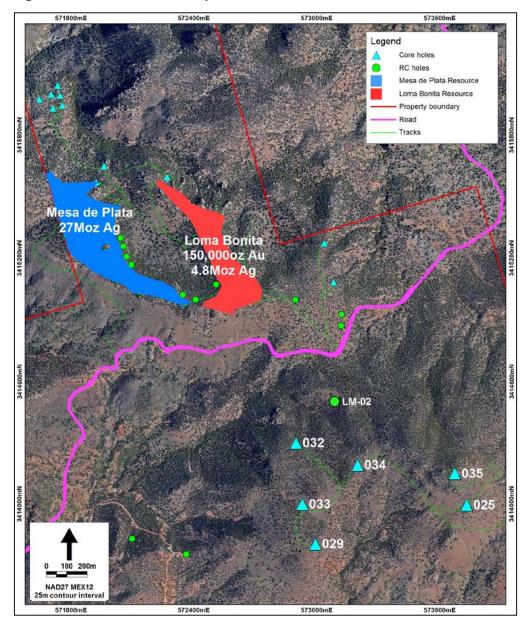
This is the final set of results from Azure's drilling at Alacran, where future work programs will be determined in consultation with Minera Teck S.A. de C.V ("Teck") following Teck's decision to exercise its Back-in Right (refer ASX Announcement 19 December 2016).

DETAILS OF CERRO SAN SIMON AND CERRO DE ENMEDIO DRILLING

The Company completed six diamond core holes and one reverse circulation hole at the Cerro San Simon and Cerro de Enmedio prospects. These seven holes were designed to follow-up geophysical (Induced Polarisation) and geochemical anomalies identified by Azure's exploration earlier in 2016.

The identification of precious and base metal mineralisation hosted in vuggy silica and also the widespread presence of the alteration mineral alunite in both drilling and surface mapping and sampling, indicate that Cerro San Simon and Cerro de Enmedio are part of a large high sulphidation epithermal system that extends at least 1,500m northwest to the Loma Bonita and Mesa de Plata gold and silver deposits (see Figure 1).

Significant levels of copper, gold and silver mineralisation were interested in all seven holes drilled, with better intercepts including:


LM-02	10.5m @ 0.43g/t Au & 20 g/t Ag from 36.0m ¹
MDPD-025	29.5m @ 0.56g/t Au & 27 g/t Ag from 20.7m
MDPD-029	0.6m @ 4.1% Cu, 0.14g/t Au & 18g/t Ag from 127.9m
MDPD-032	9.4m @ 0.3% Cu from 247.4m

¹ Refer ASX release dated 16 September 2015

MDPD-033	92.3m @ 0.2% Cu from 175.2m
MDPD-034	22.0m @ 0.5g/t Au & 23g/t Ag from 172.7m
MDPD-035	12.6m @ 0.38g/t Au from 112.7m

Drilling focused on precious and base metal targets identified at Cerro San Simon and Cerro Enmedio by surface geochemical sampling, geological mapping and Induced Polarisation (IP) surveys. Drilling tested these targets with holes LM-02, MDPD-025 and MDPD-035 completed at Cerro San Simon and MDPD-029, 032, 033 and 034 completed at Cerro de Enmedio.

Mineralised intersections from these holes are detailed in Table 1.

Figure 1: Drill hole location plan for Cerro San Simon and Cerro Enmedio

Level 1, 34 Colin Street, West Perth, Western Australia, 6005 | T: +61 8 9481 2555 | F: +61 8 9485 1290 www.azureminerals.com.au | ABN: 46 106 346 918 | ASX:AZS

HOLE No	DEPTH (m)		INTERCEPT		GRADE	
HOLE NO	FROM	то	LENGTH (m)	Cu (%)	Au (g/t)	Ag (g/t)
LM-02	36.0	46.5	10.5	NSR	0.43	20
MDPD-025	20.7	50.3	29.6	NSR	0.56	27
MDPD-029	63.0	84.6	21.6	0.13	NSR	2
MDPD-029	127.9	128.5	0.6	4.10	0.14	18
MDPD-029	161.0	169.7	8.7	0.39	NSR	NSR
MDPD-029	292.0	295.0	3.0	0.68	0.10	442
MDPD-032	247.4	256.8	9.4	0.30	NSR	NSR
MDPD-033	115.1	133.8	18.7	0.15	NSR	4
MDPD-033	175.7	268.0	92.3	0.20	NSR	4
which includes	175.7	197.6	21.9	0.50	NSR	6
MDPD-034	172.7	194.7	22.0	NSR	0.5	23
MDPD-034	222.5	233.7	11.2	0.08	0.24	14
MDPD-034	357.1	369.8	12.7	0.66	NSR	7
MDPD-035	112.7	125.4	12.7	NSR	0.38	5

 Table 1: Significant copper, gold and silver intercepts from drilling at Cerro San Simon and Cerro de Enmedio² (NSR = no significant result)

 Table 2: Drill hole information for Cerro San Simon and Cerro de Enmedio

HOLE No.	EAST (mE)	NORTH (mN)	ELEVATION (mASL)	AZIMUTH	DIP	TOTAL DEPTH (m)	LOCATION
LM-02	573087	3414501	1,606	090	-45	201	Cerro San Simon
MDPD-025	573733	3413995	1,712	210	-70	175.15	Cerro San Simon
MDPD-029	573006	3413799	1,662	090	-75	378.1	Cerro Enmedio
MDPD-032	572900	3414298	1,612	300	-60	319.65	Cerro Enmedio
MDPD-033	572930	3414000	1,648	270	-70	300.6	Cerro Enmedio
MDPD-034	573200	3414190	1,661	000	-90	376.25	Cerro Enmedio
MDPD-035	573675	3414149	1,791	000	-90	250.4	Cerro San Simon

BACKGROUND

The Cerro San Simon and Cerro de Enmedio prospects are located on the Company's Alacrán Project, located 10km to the southeast of the Cananea Copper Mine in Sonora, Mexico.

Azure acquired rights to the Alacrán Project in December 2014 through its fully owned Mexican subsidiary Minera Piedra Azul S.A. de C.V. Azure signed an Option/Shareholders agreement ("Agreement") with Minera Teck S.A. de C.V. ("Teck"), the Mexican subsidiary of Teck Resources Limited to acquire 100% of the property, subject to an underlying back-in right retained by Teck and a 2% NSR retained by Grupo Mexico. Teck Resources Limited is Canada's largest diversified

² See attached JORC Table 1 for calculation and reporting of mineralised intervals

resource company. Grupo Mexico is Mexico's largest and one of the world's largest copper producers.

Azure completed US\$5 million aggregate expenditure on the Alacrán Project and delivered notice to Teck (ASX: 31 October 2016) that it had achieved this milestone ("Notice"), thereby earning a 100% legal and beneficial interest in the project, pursuant to the terms of the Agreement.

Teck notified Azure (ASX: 19 December 2016) that it had exercised its back-in right, by which it can re-acquire a 51% interest by sole funding US\$10 million of expenditure over a four year period. This includes a US\$0.5 million cash payment to Azure.

Additionally, upon reaching its 51% interest, Teck may further increase its interest to 65% by sole funding an additional US\$5 million of expenditure, including a US\$1.5 million cash reimbursement to Azure.

-ENDS-

For further information, please contact:

Tony Rovira Managing Director Azure Minerals Limited Ph: +61 8 9481 2555 Media & Investor Relations Michael Weir / Richard Glass Citadel-MAGNUS Ph:+61 8 6160 4903

or visit <u>www.azureminerals.com.au</u>

Information in this report that relates to Exploration Results is based on information compiled by Mr Tony Rovira, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Rovira is a full-time employee and Managing Director of Azure Minerals Limited. Mr Rovira has sufficient experience which is relevant to the styles of mineralisation and types of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Rovira consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Information in this report that relates to previously reported Exploration Results has been crossedreferenced in this report to the date that it was reported to ASX. Azure Minerals Limited confirms that it is not aware of any new information or data that materially affects information included in the relevant market announcements.

Appendix

JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or	Diamond core and Reverse Circulation (RC) drilling is being undertaken on the Alacrán Project. Initial drill hole collar locations were determined by hand-held GPS.
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample	All diamond drill holes were surveyed for down-hole deviation, with surveys undertaken at 30m intervals and at bottom of hole.
	representivity and the appropriate calibration of any measurement tools or systems used.	No downhole surveys were undertaken in the RC drill holes.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively	Drill core was sampled at 0.15m to 1.5m intervals guided by changes in geology.
	simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases	RC drilling uses 10 foot long rods (= $3.048m$). Two samples were collected per rod (ie each sample length = $1.524m$).
	more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed	All RC samples were dry. Samples for each RC drill hole were collected by passing through a Jones riffle splitter over 1.5m intervals and sent for assay.
	information.	Samples preparation was undertaken at Acme Laboratories (a Bureau Veritas Group company) in Hermosillo, Sonora,, Mexico. Samples were weighed, assigned a unique bar code and logged into the Acme tracking system. Samples were dried and each sample was fine crushed to >70% passing a 2 mm screen. A 250g split was pulverised using a ring and puck system to >85% passing 75 micron screen.
		Envelopes containing the 250g sample pulps were sent via courier to the Acme laboratory in Vancouver, Canada for analysis.
		The analytical techniques for all elements (other than gold) initially involved a four-acid digest followed by multi-element ICP-MS analysis. This technique is considered a total digest for all relevant minerals.
		Following the four-acid digest, the analytical method used was MA300 (for silver and base metals by ICP- MS). Fire Assay method FA430 was used for gold.
		Over-limit assays were re-analysed by MA370 (by ICP-ES for base metals grading >1%) and FA530 (by fire assay with gravimetric finish for silver grading >200ppm and gold grading >10ppm).
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc)	Diamond drilling was HQ-size (63.5mm diameter) core from surface. Drill core was not orientated.
	and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique for all holes was reverse circulation percussion using a face-sampling hammer. Drill hole diameter was 51/4" (133mm).
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery	Drill core was reconstructed into continuous runs. Depths were measured from the core barrel and checked against marked depths on the core blocks. Core recoveries were logged and recorded in the database. Sample recoveries from the cored holes were high with >85% of the drill core having recoveries of

	and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	>90%. There is no observable relationship between core recovery and grade, and therefore no sample bias. RC samples were visually checked for recovery, moisture and contamination and notes made in the logs. RC recoveries were visually estimated from volume of sample recovered. All sample recoveries were estimated to be above 90% of expected. There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	Detailed core logging was carried out with recording of weathering, lithology, alteration, veining, mineralisation, structure, mineralogy, RQD and core recovery. Drill core was photographed, wet and without flash, in core trays prior to sampling. Each photograph includes an annotated board detailing hole number and depth interval. All holes were logged in full. Geological logging was carried out on all RC drill holes, but no geotechnical data has been recorded (or is possible to be recorded due to the nature of the sample). Logging of RC chips recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. All holes were logged in full. RC chips are stored in plastic RC chip trays. When completed, each plastic chip tray was photographed. The geological data would be suitable for inclusion in a Mineral Resource estimate.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Azure sub-samples drill core by cutting the core in half (with a wet diamond saw blade) along the core axis to prepare a ¼-core sample. The ½-core sub-sample is then wet cut along the core axis to prepare a ¼-core sub-sample for laboratory dispatch. The second half of core and residual ¼ core is retained in core trays and may be used for further testwork. All RC samples were dry. Samples for each RC drill hole were collected by passing through a Jones riffle splitter over the 1.524m (= 5 foot) intervals and sent for assay. The sample collection and preparation for RC and core samples followed industry best practice. Samples were prepared at the Acme laboratories in Hermosillo or Chihuahua, Mexico. Samples were weighed, assigned a unique bar code and logged into the Acme tracking system. The sample was dried and the entire sample was fine crushed to >70% passing a 2 mm screen. A 250g split was pulverised using a ring and puck system to >85% passing 75 micron screen. Envelopes containing the 250g pulps were sent via courier to the Acme laboratory in Vancouver. Certified Reference Standards, replicate samples, pulp duplicate samples, and blank samples were routinely inserted alternately at intervals of every 10 samples, and also immediately following visually identified mineralised intercepts to provide assay quality checks. For sub sampling and assay quality control monitoring Azure: Submits replicate DCD ¼-cores anonymously to the laboratory in order to monitor the precision of this sub sample type. Instructs the laboratory to collect and assay replicates of pulp samples in order to monitor the

Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their	 precision of the pulp material dispatched for assay. Submits known grade value pulp references anonymously to the laboratory in order to monitor the accuracy of grades reported. Submits a nominal barren 'blank' samples anonymously to the laboratory in order to monitor potential cross contamination between samples during sample preparation. The sample sizes are considered appropriate to the grain size of the material being sampled. The analytical techniques for all elements (other than gold) initially involved a four-acid digest followed by multi-element ICP-MS analysis. This technique is considered a total digest for all relevant minerals. Following the four-acid digest, the analytical method used was MA300 (for silver and base metals by ICP-MS). Fire Assay method FA430 was used for gold.
	derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Over-limit assays were re-analysed by MA370 (by ICP-ES for base metals grading >1%) and FA530 (by fire assay with gravimetric finish for silver grading >200ppm and gold grading >10ppm). Azure implemented industry standard QAQC protocols to monitor levels of accuracy and precision. Internal laboratory control procedures comprised duplicate sampling of randomly selected assay pulps, as well as internal laboratory standards and blanks. Azure routinely inserted Certified Reference Standards, replicate samples, duplicate samples, and blank samples at alternate sample intervals to provide assay quality checks. Review of the standards, duplicates and blanks are within acceptable limits. No geophysical or portable analysis tools were used to determine assay values.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Senior technical personnel from the Company (Project Geologist & Exploration Manager) and an independent technical consultant have inspected the drilling, sampling procedures and significant intersections. Primary data was collected by employees of the Company at the project site. All measurements and observations were recorded onto hard copy templates and later transcribed into the Company's digital database. Digital data storage, verification and validation is managed by an independent data management company. No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Drill hole collar locations were determined by handheld GPS. Final drill hole collar locations will be surveyed by a licensed surveyor using a two frequency differential GPS with accuracy of +/-3cm. All drill holes were surveyed for down-hole deviation, with surveys undertaken at 30m intervals and at bottom of hole. The grid system used is NAD27 Mexico UTM Zone 12 for easting, northing and RL.

Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Drill hole spacing is variable however a pattern of 50m x 50m has commenced.At this time, data spacing and distribution are not sufficient to establish the degree of geological and grade continuity appropriate for a Mineral Resource estimation procedure.No composite samples were collected.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Geological controls and orientations of the mineralised zone are unknown at this time and therefore all mineralised intersections are reported as "intercept length" and may not reflect true width. No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Assay samples were placed in poly sample bags, each with a uniquely numbered ticket stub from a sample ticket book. Sample bags were marked with the same sample number and sealed with a plastic cable tie. Samples were placed in woven polypropylene "rice bags" and a numbered tamper-proof plastic cable tie was used to close each bag. The rice bags were delivered by company personnel directly to the Acme laboratory for sample preparation. The numbers on the seals were recorded for each shipment. ACME audited the arriving samples and reported any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	All digital data is subject to audit by the independent database manager.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Alacrán Project comprises 22 mineral concessions 100% owned by Minera Teck SA de CV, a subsidiary of Teck Resources Limited. Azure acquired rights to the Alacrán Project in December 2014 through its fully owned Mexican subsidiary Minera Piedra Azul S.A. de C.V. Azure signed an Option/Shareholders agreement ("Agreement") with Minera Teck S.A. de C.V. ("Teck"), the Mexican subsidiary of Teck Resources Limited to acquire 100% of the property, subject to an underlying back-in right retained by Teck and a 2% NSR retained by Grupo Mexico. Teck Resources Limited is Canada's largest diversified resource company. Grupo Mexico is Mexico's largest and one of the world's largest copper producers. Azure completed US\$5 million aggregate expenditure on the Alacrán Project and delivered notice to Teck (ASX: 31 October 2016) that it had achieved this milestone ("Notice"), thereby earning a 100% legal and beneficial interest in the project, pursuant to the terms of the Agreement. Teck notified Azure (ASX: 19 December 2016) that it had exercised its back-in right, by which it can re-acquire a 51% interest by sole funding US\$10 million of expenditure over a four year period. This includes a US\$0.5 million cash reimbursement to Azure. Additionally, upon reaching its 51% interest, Teck may further increase its interest to 65% by sole funding an

		CLAIM	FILE	TITTLE	HECTARES
		Hidalgo	1794		
		Hidalgo 2	1796	166369	99.0
		Hidalgo 3	1797	166368	99.0
		Hidalgo 4	1798		
		Hidalgo 5	1799		
		Hidalgo 6	1800		99.0
		Hidalgo 7	1801	166373	
		Hidalgo 8	1802		
		Hidalgo 9	1803		
		Kino 2	1886		
		Kino 3	1887		100.
		Kino 4	1888		
		Kino 8 Kino 9	1892		
		Kino 10	1893		100.
		Kino 11	1894		
		Kino 15	1895		
		Kino 16	1899		
		San Simón	1800		
		San Simón 2	1894		100.
		El Alacrán	E.4.1.3/1182		3,442.
		TOTAL SURFACE	L.4.1.3/ 1102	20101/	5,442.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other	to operate in the area. The project area has a short history of industria			ial-scale mining
		dating back to the early 20 th century, which ended shortly after the start of the Mexican Revolution in 1910. After the Revolution ended in the 1920's, the property was explored intermittently. The Anaconda Copper Mining Company is known to have done some exploration, including drilling, on the property prior to the late 1960's. Data relating to this work has been located but has yet to be reviewed.			
		Between 1969 and the early 1980's, the Consejo de Recursos Minerales (Mexican Geological Survey) carried out occasional exploration programs, including drilling 6 holes in 1970 and undertaking geophysical surveys over the Palo Seco and La Morita prospects in 1981.			
		Grupo Mexico acquir completed their drilli additional 26 holes of first phase was done phase was done in 19	ng. Grupo Mexi n the project in tv in 1991 (24 holes	co drille wo phas s) and th	ed an es. The ne second
		Minera Teck S.A. de C.V., a Mexican subsidiary of Teck Resources Limited acquired the property in 2013 and undertook limited surface exploration.			
		Azure Minerals acqui December 2014 throu subsidiary company l	igh its fully own	ed Mex	ican
Geology	Deposit type, geological setting and style of	Various styles of min	eralisation occur	on the	property.
	mineralisation.	Epithermal zones, veins, breccias and stockworks host silver, lead, zinc, copper and gold in volcaniclastic rocks (Mesa de Plata, Loma Bonita, Cerro San Simon, Cerro de Enmedio and Palo Seco).			
		(Mesa de Plata, Loma		an Sim	on, Cerro

		Primary copper mineralization is hosted in porphyry rocks (Cerro Alacrán).
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to figures and tables in the report which provide all relevant details.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported mineralised intervals have been length- weighted. No top cuts have been applied. Overall mineralised intervals were calculated using a
grades are usually material and should be stated.lower grade cut-cWhere aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of suchlower grade cut-c0.1% Cu for copp No metal equivaleNo metal equivale	lower grade cut-off of 0.1g/t Au for gold intercepts and 0.1% Cu for copper intercepts. No metal equivalencies are reported.	
	aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Geological controls and orientations of the mineralised zones are unknown at this time and therefore all mineralised intersections are reported as "intercept length" and may not reflect true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in the accompanying report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	The Company believes that the ASX announcement is a balanced report with all material results reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	This announcement refers to previous exploration results including geophysics, geochemistry and geology.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further work to better understand the mineralisation systems in the project area will be determined upon a full analysis and interpretation of results.