3 February 2017



ASX Announcement ASX: BOE

# Core Holes Confirm High Grade Mineralisation at Jasons with trend open to the North

# **HIGHLIGHTS**

- Two sonic core holes confirm high-grade mineralisation seen at Jasons South is in coarse to very coarse sands, and expected therefore to be highly leachable
- High-grade trend open along to the north
- Additional mud rotary holes planned to test northern extents of high-grade mineralisation
- Significant intercepts encountered include:
  - 3m @ 3,500ppm pU<sub>3</sub>O<sub>8</sub> (BSC001 from 105m)
  - 5m @ 1,872ppm pU<sub>3</sub>O<sub>8</sub> (BSC002 from 105m)
  - 1.25m @ 1,839ppm pU<sub>3</sub>O<sub>8</sub> (BMR065 from 94.4m)
  - 1.5m @ 1,650ppm pU<sub>3</sub>O<sub>8</sub> (BMR056 from 97.2m)
  - 1m @ 1,115ppm pU<sub>3</sub>O<sub>8</sub> (BMR058 from 93.4m)
  - 0.75m @ 1,642ppm pU<sub>3</sub>O<sub>8</sub> (BMR066 from 101.4m)

Boss's Chief Executive Officer, Mr Duncan Craib, said "the sonic core results are a significant step forward at the Jasons Prospect as they indicate the real potential of a highly leachable roll front deposit and further validate high grade intercepts as identified by the drilled mud rotary holes. Given the satisfying results the PFS drill program has been extended to pursue the northern extents of the high-grade mineralisation."

**Boss Resources Limited (ASX: BOE)** is pleased to announce results from the last 12 mud-rotary holes (BMR055 to BMR066) have been received and validated; along with 2 sonic core holes (Figure 1). This drilling positively confirms the trend extent of the southern high-grade region. The current drill program was designed to enable further delineation and expansion as expected of the known resource (reported at 2.8Mt at 840ppm  $eU_3O_8$  for 5.2Mlb contained  $U_3O_8$  above a 250ppm  $U_3O_8$  lower cutoff). The Jasons Prospect is located approximately 12km north of Boss's Honeymoon Uranium Mine Site.

The two sonic core holes (BSC001 and BSC002) were drilled as twins of BMR034 and BMR038 and have confirmed that the high-grade mineralisation in this region is associated with medium to coarse sand units, considered to be highly amenable to the ISL process. High grade mineralisation is seen along the reduction/oxidation ('redox') boundary of coarse to very coarse and pebbly sands, medium to coarse grained well sorted sands; very coarse to pebbly poorly sorted sands (Figure 2) and minor black silty clay carbonaceous/graphitic interbeds.

Only one sonic core hole remains outstanding to complete the four sonic hole program. This program had a twofold purpose of obtaining fresh core samples for metallurgical testwork and to further confirm the Prompt Fission Neutron Tool (PFN)  $pU_3O_8$  calibration profile. This is an important validation step prior to potentially using the PFN data in Resource estimates.



The 2017 drilling program commenced 9 January with 12 mud rotary holes drilled for 1,358m. The mud rotary drilling results confirm a northerly trend extent of the high-grade, sandstone related mineralisation (e.g. BMR056 and BMR065) and confirmed a narrower trend in the north (BMR058). Considering these positive results 6 additional mud rotary holes will be drilled to test further trend extents.

The mineralisation trend directly south is closed off by holes BMR061 to BMR064; however, interpretation of the basement contacts indicate that this may be due to a local feature associated with a short-scale basement high. Historical drilling indicates further uranium mineralisation to the southeast within the paleo channel and further work will be required to test for suitable mineralisation between the current drill region and the distal eastern mineralisation (Figure 1).

Figure 1 shows the peak per-hole grade x thickness composites (single best composite, not amalgamated) for the recent drilled holes, along with historical holes for reference. Results support the general endowment seen by historical drilling with significantly good lateral continuity of mineralisation encountered. Figure 3 shows example sections along lines 13, 14 and 16.

Table 1 summarises  $pU_3O_8$  and  $eU_3O_8$  significant intercepts above a nominal 250ppm  $eU_3O_8$  (gamma) lower cutoff and greater than 0.5m in thickness and less than 1m of internal dilution. Holes where the PFN data was either unreliable or the hole was blocked do not have a  $pU_3O_8$  grade assigned. Based upon logging of the drilling muds and geophysical interpretations, the mineralisation encountered to date is from within sandy to silty units of the Lower and Middle Eyre Formation and along sand/clay interbeds and interfaces.

The gamma  $eU_3O_8$  probing for holes BMR001 to BMR066 was undertaken by Borehole Wireline, a highly experienced South-Australian based geophysical contractor. The tool used has been calibrated in the South Australia Glenside test pits. The geophysical probing for the remaining holes was be undertaken using Boss's own logging truck with both gamma  $eU_3O_8$  and PFN  $pU_3O_8$  readings to be collected.

Full sampling and drilling details are shown in Appendix 1; previously disclosed drill results are shown in Table 2.





**Figure 1:** Location of drilling at the Jasons Prospect, maximum grade times thickness ( $eU_3O_8$  [in ppm] x m) shown to assist in illustrating high-grade trends. The southern trend extent target area is shown in the inset.



Figure 2: Showing sonic core from BSC001 (104-107.6m).









**Figure 3:** Example cross sections through Lines 13, 14 and 16. Results are shown as grade (ppm  $eU_3O_8$  or  $pU_3O_8$  / thickness in metres where available). Note: sections only show the bottom ~60m of each section.



| Table 1: Recent Drilling - Summary Results from 2016 Jasons Mud Rotary Drilling                                                  |         |          |       |     |     |                   |        |                                             |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|-----|-----|-------------------|--------|---------------------------------------------|---------------------------------------------------|
| Summarised above a nominal 50cm minimum thickness, 1m internal dilution, $$ and above 250ppm eU <sub>3</sub> O <sub>8</sub> $^1$ |         |          |       |     |     |                   |        |                                             |                                                   |
|                                                                                                                                  |         |          |       |     |     |                   |        | eU <sub>3</sub> O <sub>8</sub> <sup>1</sup> |                                                   |
| Hole ID                                                                                                                          | Easting | Northing | RL    | Dip | Az. | From              | length | (ppm)                                       | pU <sub>3</sub> O <sub>8</sub> <sup>2</sup> (ppm) |
| BSC001                                                                                                                           | 467673  | 6500627  | 96    | -90 | 0   | 85.75             | 0.75   | 1018                                        | 949                                               |
|                                                                                                                                  |         |          |       |     |     | 96.25             | 1      | 433                                         | 505                                               |
|                                                                                                                                  |         |          |       |     |     | 99.75             | 0.75   | 387                                         | 387                                               |
|                                                                                                                                  |         |          |       |     |     | 105               | 3      | 1174                                        | 3500                                              |
| BSC002                                                                                                                           | 467563  | 6500803  | 96    | -90 | 0   | 91                | 1      | 1400                                        | 1200                                              |
|                                                                                                                                  |         |          |       |     |     | 105               | 4      | 400                                         | 1872                                              |
| BMR055                                                                                                                           | 467243  | 6501061  | 95.15 | -90 | 0   | 82.9              | 0.5    | 268                                         |                                                   |
| BMR055                                                                                                                           |         |          |       |     |     | 90.9              | 0.5    | 654                                         | 634                                               |
| BMR055                                                                                                                           |         |          |       |     |     | 101.15            | 0.75   | 584                                         | 1,082                                             |
| BMR056                                                                                                                           | 467307  | 6501176  | 95.31 | -90 | 0   | 73.2              | 0.5    | 294                                         |                                                   |
| BMR056                                                                                                                           |         |          |       |     |     | 73.95             | 0.75   | 324                                         |                                                   |
| BMR056                                                                                                                           |         |          |       |     |     | 78.7              | 0.5    | 293                                         |                                                   |
| BMR056                                                                                                                           |         |          |       |     |     | 88.7              | 0.5    | 287                                         |                                                   |
| BMR056                                                                                                                           |         |          |       |     |     | 97.2              | 1.5    | 1,581                                       | 1,650                                             |
| BMR056                                                                                                                           |         |          |       |     |     | 106.95            | 0.5    | 381                                         | 818                                               |
| BMR057                                                                                                                           | 466736  | 6501250  | 96.19 | -90 | 0   | 85.9              | 0.5    | 283                                         | 518                                               |
| BMR057                                                                                                                           |         |          |       |     |     | 88.9              | 0.5    | 332                                         | 1,080                                             |
| BMR057                                                                                                                           |         |          |       |     |     | 90.65             | 0.75   | 779                                         | 622                                               |
| BMR058                                                                                                                           | 466867  | 6501356  | 95.37 | -90 | 0   | 76.9              | 0.75   | 693                                         | 1,238                                             |
| BMR058                                                                                                                           |         |          |       |     |     | 84.9              | 0.5    | 710                                         | 2,281                                             |
| BMR058                                                                                                                           |         |          |       |     |     | 86.65             | 1.5    | 355                                         | 826                                               |
| BMR058                                                                                                                           |         |          |       |     |     | 93.4              | 1      | 948                                         | 1,115                                             |
| BMR058                                                                                                                           |         |          |       |     |     | 77.65             | 0.5    | 272                                         | 457                                               |
| BMR059                                                                                                                           | 466992  | 6501458  | 94.91 | -90 | 0   | 87.15             | 1.25   | 350                                         | 518                                               |
| BMR059                                                                                                                           |         |          |       |     |     | 98.4              | 0.5    | 257                                         | 291                                               |
| BMR059                                                                                                                           |         |          |       |     |     | 104.65            | 0.75   | 796                                         | 1,160                                             |
| BMR059                                                                                                                           |         |          |       |     |     | 106.4             | 0.5    | 339                                         | 1,354                                             |
| BMR060                                                                                                                           | 466617  | 6501153  | 96.63 | -90 | 0   | 83.45             | 0.5    | 343                                         | 937                                               |
| BMR060                                                                                                                           |         |          |       |     |     | 87.7              | 0.75   | 383                                         | 547                                               |
| BMR060                                                                                                                           |         |          |       |     |     | 90.2              | 0.5    | 482                                         | 931                                               |
| BMR060                                                                                                                           |         |          |       |     |     | 92.95             | 1      | 721                                         | 643                                               |
| BMR060                                                                                                                           |         |          |       |     |     | 108.95            | 0.75   | 639                                         | 512                                               |
| BMR061                                                                                                                           | 468217  | 6499907  | 98.04 | -90 | 0   | No significant re | sults  |                                             |                                                   |
| BMR062                                                                                                                           | 468372  | 6500188  | 98.5  | -90 | 0   | 92.4              | 0.5    | 271                                         | 532                                               |
| BMR062                                                                                                                           |         |          | ļ     |     |     | 105.15            | 0.5    | 456                                         | 433                                               |
| BMR063                                                                                                                           | 468313  | 6500048  | 98.31 | -90 | 0   | No significant re | esults |                                             |                                                   |
| BMR064                                                                                                                           | 468341  | 6500110  | 98.24 | -90 | 0   | No significant re | sults  |                                             |                                                   |
| BMR065                                                                                                                           | 467396  | 6501290  | 95.35 | -90 | 0   | 94.4              | 1.25   | 1,040                                       | 1,839                                             |
| BMR065                                                                                                                           |         |          |       |     |     | 103.65            | 0.5    | 487                                         | 1,314                                             |
| BMR066                                                                                                                           | 466847  | 6501829  | 95.4  | -90 | 0   | 101.4             | 0.75   | 604                                         | 1,642                                             |
|                                                                                                                                  |         |          |       |     |     |                   |        |                                             |                                                   |

<sup>1</sup> - eU<sub>3</sub>O<sub>8</sub> grade data derived from natural gamma downhole tool calibrated and operated by Borehole Wireline 2(South Australia) for holes BMR001 to BMR064. All other holes are by the Boss gamma tool.. No top cuts applied.

<sup>2</sup> - pU<sub>3</sub>O<sub>8</sub> grade derived from Boss's Prompt Fission Neutron (PFN) tools. These have been calibrated to the groundwater and sedimentary

conditions at the Honeymoon Mine Site.



| Table 2: Previously Announced Summary Results from 2016 Jasons Mud Rotary Drilling |              |              |          |        |           |      |               | lg              |                                                      |                                               |
|------------------------------------------------------------------------------------|--------------|--------------|----------|--------|-----------|------|---------------|-----------------|------------------------------------------------------|-----------------------------------------------|
| Sumn                                                                               | narised abov | ve a nominal | l 50cm m | inimur | n thickne | ess, | , 1m internal | dilution, and a | above 250pp                                          | m eU <sub>3</sub> O <sub>8</sub> <sup>1</sup> |
| Hole ID                                                                            | Easting      | Northing     | RL       | Dip    | Az.       |      | From          | length          | eU <sub>3</sub> O <sub>8</sub> <sup>1</sup><br>(ppm) | pU₃O₃ ² (ppm)                                 |
| BMR001                                                                             | 465,947      | 6,501,988    | 94       | -90    |           | 0    | 93.25         | 0.75            | 399                                                  | 399                                           |
| BMR002                                                                             | 465,834      | 6,501,804    | 94       | -90    | 1         | 0    | 87.75         | 0.75            | 684                                                  | Not available                                 |
|                                                                                    | 1            |              |          | 1      | 1         | ĺ    | 91.75         | 0.75            | 1,084                                                | Not available                                 |
| BMR003                                                                             | 465,887      | 6,501,581    | 95       | -90    | 1         | 0    | 92.25         | 0.5             | 473                                                  | Not available                                 |
| BMR004                                                                             | 466,088      | 6,502,000    | 94       | -90    | İ         | 0    | 80.5          | 0.5             | 309                                                  | 830                                           |
|                                                                                    |              |              |          |        |           |      | 87.25         | 0.75            | 749                                                  | 658                                           |
| BMR005                                                                             | 466,254      | 6,502,138    | 95       | -90    | 0         | ĺ    | 94            | 0.75            | 1,114                                                | 1289                                          |
| BMR006                                                                             | 465,991      | 6,501,688    | 95       | -90    | 0         | Î    | 87.5          | 0.5             | 389                                                  | 623                                           |
| BMR006                                                                             | 465,991      | 6,501,688    | 95       | -90    | 0         | Î    | 92.75         | 1.25            | 1,062                                                | 1137                                          |
| BMR007                                                                             | 466,109      | 6,501,790    | 95       | -90    | 0         |      | 94.25         | 0.75            | 1,478                                                | 1878                                          |
| BMR008                                                                             | 466,139      | 6,501,514    | 96       | -90    | 0         |      | 90.25         | 1.5             | 1,427                                                | 1167                                          |
|                                                                                    |              |              |          |        |           |      | 96.25         | 1               | 1,111                                                | Not available                                 |
| BMR009                                                                             | 465,992      | 6,501,417    | 96       | -90    | 0         |      | 92            | 0.75            | 409                                                  | 511                                           |
|                                                                                    | 1            |              |          |        |           |      | 94            | 0.75            | 521                                                  | 523                                           |
| BMR010                                                                             | 465,869      | 6,501,327    | 95       | -90    | 0         | Ì    | 92.5          | 0.5             | 587                                                  | 857                                           |
| BMR011                                                                             | 466,008      | 6,501,167    | 96       | -90    | 0         |      | 87.25         | 0.5             | 834                                                  | Not available                                 |
|                                                                                    | 1            |              |          |        |           | Î    | 94            | 0.75            | 425                                                  | Not available                                 |
| BMR012                                                                             | 466.242      | 6.501.889    | 95       | -90    | 0         | Î    | 79.75         | 0.5             | 325                                                  | 828                                           |
|                                                                                    |              |              |          |        |           |      | 84            | 0.5             | 389                                                  | 692                                           |
|                                                                                    |              |              |          | Ì      | 1         |      | 85.5          | 0.75            | 501                                                  | 1327                                          |
|                                                                                    |              |              |          |        |           |      | 95.5          | 1.5             | 766                                                  | 808                                           |
| BMR013                                                                             | 466.400      | 6.501.958    | 95       | -90    | 0         |      | 90.25         | 0.75            | 391                                                  | 616                                           |
| BMR014                                                                             | 466.521      | 6.502.072    | 95       | -90    | 0         |      | 96            | 0.5             | 392                                                  | 920                                           |
| 5                                                                                  |              | 0,002,072    |          |        |           |      | 101 75        | 1 25            | 1 488                                                | 3024                                          |
| BMR015                                                                             | 466.615      | 6.502.179    | 95       | -90    | 0         | Ì    | 105.25        | 0.5             | 582                                                  | 1594                                          |
| BMR016                                                                             | 466 242      | 6 501 637    | 96       | -90    | 0         |      | 95.5          | 0.75            | 478                                                  | 652                                           |
| BMR017                                                                             | 466,360      | 6.501.723    | 96       | -90    | 0         | Ì    | 85            | 0.5             | 381                                                  | 1262                                          |
| BMR018                                                                             | 466.494      | 6.501.812    | 96       | -90    | 0         |      | 74.8          | 0.5             | 411                                                  | 503                                           |
|                                                                                    | 1            |              |          |        | -         | Ì    | 85.55         | 0.75            | 775                                                  | 2076                                          |
|                                                                                    |              |              |          | i      |           | Ì    | 87.3          | 0.5             | 429                                                  | 440                                           |
|                                                                                    | 1            |              |          | 1      |           | Ì    | 93.55         | 1.25            | 1,389                                                | 1662                                          |
| BMR019                                                                             | 466.612      | 6.501.917    | 96       | -90    | 0         |      | 83            | 0.5             | 311                                                  | 417                                           |
|                                                                                    | 1            | -,,          |          |        | -         |      | 86.25         | 0.5             | 828                                                  | 1205                                          |
| BMR020                                                                             | 466,137      | 6.501.263    | 96       | -90    | 0         |      | 88            | 2               | 584                                                  | Not available                                 |
| 5                                                                                  | 100,207      | 0,001,200    | 50       |        |           |      | 96.75         | 0.5             | 320                                                  | Not available                                 |
| BMR021                                                                             | 466.278      | 6.501.350    | 96       | -90    | 0         |      | 81            | 2               | 395                                                  | 676                                           |
| DIIIIOEE                                                                           | 100,270      | 0,001,000    |          |        |           | Ì    | 91            | 0.5             | 265                                                  | 176                                           |
|                                                                                    | 1            |              |          |        |           |      | 95.25         | 1               | 787                                                  | 943                                           |
| BMR022                                                                             | 466.384      | 6.501.464    | 96       | -90    | 0         | Ì    | 88.5          | 1.25            | 1.056                                                | 1153                                          |
|                                                                                    |              |              |          |        | -         | Ì    | 94.75         | 0.75            | 799                                                  | 781                                           |
| BMR023                                                                             | 466.509      | 6.501.563    | 96       | -90    | 0         | Ì    | 87.5          | 0.75            | 1.032                                                | 1505                                          |
|                                                                                    |              |              |          |        | -         | Ì    | 90.75         | 0.5             | 362                                                  | 199                                           |
|                                                                                    |              |              |          |        |           |      | 92            | 0.75            | 759                                                  | 862                                           |
| BMR024                                                                             |              |              |          |        |           |      | 84            | 0.5             | 470                                                  | 1256                                          |
|                                                                                    |              |              |          |        |           |      | 88.5          | 0.5             | 209                                                  | 793                                           |
| BMR025                                                                             | 466.760      | 6.501.764    | 96       | -90    | 0         | İ    | 85.25         | 1.5             | 989                                                  | Not available                                 |
|                                                                                    |              | ,,.          |          | 1 20   | 1         | Ť    | 88.25         | 1.25            | 1.436                                                | Not available                                 |
|                                                                                    | i            |              |          |        | 1         | İ    | 104           | 1.25            | 776                                                  | Not available                                 |
|                                                                                    | 1            |              |          | 1      | 1         | Ť    | 105.75        | 0.5             | 273                                                  | Not available                                 |
| BMR026                                                                             | 466.872      | 6.501.616    | 96       | -90    | 0         |      | 76            | 0.5             | 759                                                  | 1154                                          |
|                                                                                    |              |              | 20       |        | -         |      | 80.25         | 1               | 717                                                  | 1036                                          |
|                                                                                    | 1            |              |          | 1      | 1         | Ť    | 86.25         | 0.75            | 593                                                  | 1425                                          |
| BMR027                                                                             | 467.279      | 6.500.423    | 96       | -90    | 0         |      | 90.75         | 1               | 956                                                  | 1665                                          |
| BMR028                                                                             | 467.365      | 6.500.565    | 96       | -90    | 0         | İ    | 85.5          | 0.75            | 736                                                  | 303                                           |
| BMR029                                                                             | 467,466      | 6,500,703    | 96       | -90    | 0         |      | 85.5          | 0.75            | 1,297                                                | 1537                                          |



|           |         | I I       | 1  |     |           | 98 75  | 0.75 | 702         | 1103               |
|-----------|---------|-----------|----|-----|-----------|--------|------|-------------|--------------------|
| BMB030    | 467 515 | 6 500 756 | 96 | -90 | 0         | 88 5   | 0.75 | 1 676       | 1969               |
| DIVINOSO  | 407,515 | 0,300,730 | 50 | -50 | 0         | 102.25 | 2.5  | 889         | Not available      |
| BMR031    | 167 618 | 6 500 873 | 96 | -90 | 0         | 94.25  | 0.5  | 466         | 11/                |
| DIVINOSI  | 407,018 | 0,300,873 | 50 | -50 | 0         | 99.5   | 0.5  | 400         | 1045               |
|           |         |           |    |     |           | 101 5  | 0.5  | 297         | 533                |
| BMR032    |         |           | 96 | -90 | 0         | 101.5  | 0.5  | No signifi  | cant intersections |
| BMR033    | 467 506 | 6 501 057 | 96 | -90 | 0         | 89.2   | 15   | 478         | 486                |
| BMR033    | 407,500 | 0,501,057 | 50 | 50  | 0         | 99.65  | 1.5  | 1 012       | 1102               |
| BMR033    |         |           |    |     | 0         | 106.9  | 05   | 393         | Not available      |
| BMR034    | 467 451 | 6 500 929 | 96 | -90 | 0         | 100.5  | 2    | 374         | 857                |
| BMR035    | 467 359 | 6 500 774 | 96 | -90 | 0         | 86.45  | 1    | 683         | 635                |
| Divinto55 | 107,555 | 0,000,771 | 50 | 50  |           | 101.2  | 0.75 | 252         | 720                |
| BMR036    | 467.263 | 6.500.637 | 96 | -90 | 0         | 85.45  | 0.75 | 976         | 1428               |
| BMR036    | ,       | -,,       |    |     | 0         | 100.45 | 0.5  | 267         | 409                |
| BMR037    | 467.161 | 6.500.505 | 96 | -90 | 0         | 87.15  | 0.75 | 995         | 1255               |
| BMR038    | 467.573 | 6.500.813 | 96 | -90 | 0         | 86.4   | 1    | 407         | 405                |
| BMR038    | ,       | -,,       |    |     | 0         | 90.9   | 1    | 991         | 1143               |
| BMR038    |         |           |    |     | 0         | 94.4   | 0.5  | 308         | 412                |
| BMR038    |         |           |    |     | 0         | 100.65 | 4    | 464         | 440                |
| BMR038    |         |           |    |     | 0         | 106.15 | 1.25 | 410         | 532                |
| BMR039    | 467.397 | 6.500.177 | 96 | -90 | 0         | 92.2   | 0.5  | 742         | 802                |
| BMR040    |         | -,,       | 96 | -90 |           |        |      | No Signific | cant Intersections |
| BMR041    | 467.621 | 6.500.419 | 96 | -90 | 0         | 85.2   | 0.75 | 762         | 691                |
|           |         |           |    |     |           | 106.7  | 1.25 | 165         | 544                |
| BMR042    | 467,683 | 6,500,553 | 96 | -90 | 0         | 86.95  | 1    | 1,531       | 1332               |
| BMR042    |         |           |    |     | 0         | 103.95 | 1.5  | 605         | 1389               |
| BMR043    | 467,683 | 6,500,637 | 96 | -90 | 0         | 86.2   | 1    | 1,353       | 1780               |
| BMR043    |         |           |    |     | 0         | 96.2   | 1    | 491         | 672                |
| BMR043    |         |           |    |     | 0         | 99.95  | 1    | 297         | 439                |
| BMR043    |         |           |    |     | 0         | 105.45 | 2.5  | 1,394       | 4005               |
| BMR044    | 467,780 | 6,500,698 | 96 | -90 | 0         | 83.95  | 0.5  | 357         | 344                |
| BMR044    |         |           |    |     | 0         | 93.45  | 1.75 | 875         | 1317               |
| BMR045    | 467,811 | 6,500,766 | 96 | -90 | 0         | 110.7  | 0.75 | 887         | 1100               |
| BMR046    | 467,867 | 6,500,873 | 96 | -90 | 0         | 97.95  | 0.5  | 417         | 569                |
| BMR047    | 467,733 | 6,499,961 | 96 | -90 | 0         | 88.45  | 0.5  | 559         | Not available      |
| BMR048    |         |           | 96 | -90 | 0         |        |      | No Signifi  | cant Intersections |
| BMR049    | 467,920 | 6,500,230 | 96 | -90 | 0         | 85.15  | 0.75 | 910         | 1911               |
| BMR050    | 467,992 | 6,500,365 | 96 | -90 | 0         | 80.4   | 0.75 | 398         | 548                |
| BMR050    |         |           |    |     | 0         | 85.65  | 0.5  | 484         | 286                |
| BMR050    |         |           |    |     | 0         | 95.4   | 0.5  | 374         | 584                |
| BMR050    |         |           |    |     | 0         | 103.9  | 6.75 | 524         | 940                |
|           |         |           |    |     | including | 106.4  | 0.5  | 1124        | 1067               |
|           |         |           |    |     |           | 109.6  | 1.0  | 1096        | 3208               |
| BMR051    |         |           | 96 | -90 |           |        |      | No Signifi  | cant Intersections |
| BMR052    | 468,041 | 6,500,425 | 96 | -90 | 0         | 78.95  | .5   | 447         | 435                |
|           |         |           |    |     |           | 86.7   | 0.75 | 1214        | 1477               |
| BMR053    | 467,967 | 6,500,294 | 96 | -90 | 0         | 86.4   | 0.75 | 665         | 308                |
|           |         |           |    |     |           | 104.15 | 1    | 725         | 2727               |
|           |         |           |    |     |           | 108.15 | 2    | 254         | 200                |
| BMR054    | 467,181 | 6,500,881 | 96 | -90 | 0         | 86.65  | 1.25 | 741         | 775                |
|           |         |           |    |     |           | 91.9   | 1    | 1242        | 1522               |

<sup>1</sup> - eU<sub>3</sub>O<sub>8</sub> grade data derived from natural gamma downhole tool calibrated and operated by Borehole Wireline 2(South Australia). No top cuts applied.

<sup>2</sup> - pU<sub>s</sub>O<sub>s</sub> grade derived from Boss's Prompt Fission Neutron (PFN) tools. These have been calibrated to the groundwater and sedimentary conditions at the Honeymoon Mine Site.



### About the Honeymoon Uranium Project

The Honeymoon Uranium Project (Figure 3) is located in South Australia, approximately 80km northwest from the town of Broken Hill near the SA / NSW border. The Project consists of 1 granted Mining Lease, 5 granted Exploration Licenses, 8 Retention Leases and 2 Miscellaneous Purposes Licenses.

There are 2 main exploration regions: the Eastern Region (ELs 5215 and 5621) which hosts the Honeymoon, Brooks Dam and East Kalkaroo Resources; and the Western Region (ELs 5043, 5623 and 5622) which hosts the Gould's Dam and Billeroo deposits.

The Project has combined JORC 2012 Mineral Resources across three main project areas of 40Mt at 650ppm  $eU_3O_8$  for 57.8Mlb of contained  $U_3O_8$ . Including Measured Resources of 1.7MT @ 1720ppm  $eU_3O_8$ , Indicated Resources of 5.9Mt @ 810ppm  $eU_3O_8$  and Inferred resources of 32.5Mt @ 569ppm  $eU_3O_8$  reported above a 250ppm lower cutoff.

The Project also has a combined Exploration Target of between 32Mt to 78Mt at a grade of between 450ppm and 1400ppm  $U_3O_8$  with a potential target endowment of between 42Mlb and 100Mlb of contained  $U_3O_8$ . This Exploration Target is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource. It is uncertain if further exploration will result in the estimation of a Mineral Resource. See announcement of 8 December 2015 for further information.

The Honeymoon Uranium Project is located in the southern part of the Callabonna sub-basin in South Australia. Uranium mineralisation within the project area is hosted by the Yarramba and Billeroo palaeochannels (Figure 3). These consist of Palaeogene age palaeovalleys filled by a sequence of interbedded sand, silt and clay). Thickness of the palaeochannels at Honeymoon deposit area reaches a maximum of 55m thick, and is around a depth from surface of approximately 110 metres.

The uranium mineralisation represents a classic basal channel type sandstone-hosted uranium roll-front model. This model implies the movement of oxidised, uranium-bearing fluid through a largely reduced aquifer, with mineralisation occurring at the redox front of the fluid. A geochemical zonation is associated with the roll front, including oxidation of the sands upstream (orange and yellow limonite) and abundance of pyrite/marcasites and organic matter downstream. Mineralisation is associated with discreet accumulations of organic matter and pyrite within the palaeovalley sequence.





**Figure 3: Honeymoon Uranium Project.** The yellow shaded regions represent palaeodrainage channels which have potential to host uranium mineralisation and are the focus of exploration efforts.

#### For further information, contact:

Duncan Craib Chief Executive Officer +61 (0) 447 753 163

#### **Competent Persons' Statements**

The information in this document that relates to the Exploration Data is based on information provided by Mr. Neil Inwood, who is a Fellow of the AUSIMM. Mr Inwood is a consulting geologist and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr. Inwood has consented to the inclusion of this information in this document in the form and context in which it appears. An entity associated with Mr Inwood has shares in Boss Resources. The Company confirms that the form and context in which the Competent Person's previous findings are presented have not been materially modified from the original market announcements released on 6 December, 8 December and 14 December 2016.

The information in this document relating to the Mineral Resources is extracted from the announcements entitled 'Substantial Increase And Upgrade In Honeymoon Uranium Resource' dated 20 January 2016, 'Boss Increases Honeymoon Uranium Project Resource' dated 8 April 2016, 'Maiden Resource of 5.2Mlb for Jason's Deposit' dated 14 June 2016 and is available to view on www.bossresources.com.au. The information relating to the Exploration Target is extracted from the announcement entitled 'Honeymoon Project Exploration Update' and dated 8 December 2015. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and that, in the case of Mineral Resources or Ore Reserves, all the material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.



# Appendix 1 - JORC TABLES

Appendix 1 - JORC TABLES

## JORC Table 1: Section 1 Sampling Techniques and Data

| Criteria of              | Reference to the Current Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JORC Code                | Comments / Findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2012                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sampling<br>techniques   | In-hole radiometric uranium grade data was intially determined by Borehole Wireline with $eU_3O_8$ determined<br>from the down-hole natural gamma-logs and $pU_3O_8$ . Additionally Boss is utilising it's own PFN tools to obtain<br>$pU_3O_8$ grades which when properly calibrated reduce the efect of radioactive disequilibrium.<br>All tools were maintained by specialised electronic companies and technicians based in Adelaide.<br>Calibration for the PFN tool was regularly undertaken using in-house calibration pits available at the Honeymoon<br>Project and for the gamma tools externally, at the certified calibration facilities at Glenside, ConyIngham St,<br>Adelaide. Standard industry procedures were used for geophysical logging of the drill holes and estimation from<br>the geophysical logs for the $eU_3O_8$ (from the gamma-ray logs) and $pU_3O_8$ (from the PFN instruments) grades |
| Drilling                 | The holes were drilled by Watsons Drilling using the mud rotary method. The typical hole diameter is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| techniques               | 14.5cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill sample<br>recovery | Not applicable. Calliper readings indicate that hole size diameters are predominantly consistent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Logging                  | Chip samples are collected every 2m and piles are s photographed and geologically logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | Documentation has included colour, grain size, texture, sorting, alteration and oxidation state. All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | mineralised intervals were geologically logged with logging standards compliant with the industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | standards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-                     | QA/QC of the geophysical data has included systematic control of the depth logged and control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| sampling                 | recorded U <sub>3</sub> O <sub>8</sub> grade values. Geophysical tools estimate uranium content at large volumes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| techniques               | approximately 25 to 40 cm radius. The volume is sufficiently large allowing accurate measure of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and sample               | grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| preparation              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Quality of               | Company Geophysical tools used to collect data include:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| assay data               | <ul> <li>Auslog Gamma (with Guard) S422</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| and                      | Prompt Fission Neutron tool PFN#27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| laboratory               | Prompt Fission Neutron tool PFN#32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tests                    | <ul> <li>Gamma combined with guard \$058</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | • Auslog 3 arm calliper A326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | Borehole wireline tools used to collect data include: Natural gamma, Induction, SP, Density, Spectral Gamma, deviation and 3 arm calliper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | Holes were logged in down and up directions, which provided a good control of logging consistency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | All geophysical tools were regularly calibrated, using in-house facilities and the certified laboratories in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | Adelaide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | QA/QC of the geophysical data has included systematic control of the depth logged and control of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | recorded eU <sub>3</sub> O <sub>8</sub> grade values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          | The winches in the logging truck have their depth calibration checked periodically.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Verification             | The gamma-log data were additionally validated against the PFN logs. PFN grade data was only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of sampling              | reported where there was a good correlation between PFN and gamma anomalies; and where PFN tool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and assaying             | readings were considered to be robust.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Location of  | Positions are set out using a Garmin handheld GPS, after drilling.                                      |
|--------------|---------------------------------------------------------------------------------------------------------|
| data points  | The projection adopted for surveying is GDA 94, MGA zone 54 with AHD elevation. All surveys were tied   |
|              | to the existing registered base stations.                                                               |
|              | Topographic control was improved by Aerometrx Pty. Ltd flying 10cm pixel aerial photography which was   |
|              | rectified using registered survey points installed at site before plant construction began.             |
| Data spacing | Drill spacing is approximately 100m x 180m. Uranium grade is composited to 0.25cm to aid in             |
| and          | interpretation.                                                                                         |
| distribution |                                                                                                         |
| Orientation  | All holes are drilled vertically which provides an accurate intersection of the flat laying mineralised |
| of data in   | bodies.                                                                                                 |
| relation to  |                                                                                                         |
| geological   |                                                                                                         |
| structure    |                                                                                                         |
| Sample       | N/A                                                                                                     |
| security     |                                                                                                         |
| Audits or    | N/A                                                                                                     |
| reviews      |                                                                                                         |

# JORC Table 1: Section 2 Reporting of Exploration Results

| Criteria of<br>JORC Code                         | Reference to the Current Report<br>Comments / Findings                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 2012                                             |                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Mineral<br>tenement and<br>land tenure<br>status | The Project consists of 1 granted Mining Lease, 5 granted Exploration Licenses, 8 Retention Leases and 2 Miscellaneous Purposes Licenses.<br>The Mining license expires in 2023, exploration licenses expire in 2017 (except EL 5043 which expires in 2016).                                                                                                         |  |  |  |  |  |  |  |
| Exploration<br>done by other<br>parties          | The Honeymoon deposit and surrounding areas of the Yarramba palaeochannel have been intensely explored and systematically drilled starting from 1969.<br>The Honeymoon Project was evaluated several times, with the degree of details varying from scoping studies to bankable feasibility undertaken in 2006. Resource estimates have been made from 1998 to 2016. |  |  |  |  |  |  |  |
| Geology                                          | Palaeochannel type sandstone hosted uranium roll and tabular style.                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| Drill hole<br>Information                        | See previously exploration announcements and drillhole collar diagrams. The topography in this region<br>is predominantly flat. All holes were drilled vertically with an average hole length of approximately<br>120m.                                                                                                                                              |  |  |  |  |  |  |  |
| Data<br>aggregation<br>methods                   | Mineralised intervals were chosen based upon a nominal 250ppm U <sub>3</sub> O <sub>8</sub> cutoff and over 50cm for reporting. Consideration was given to mineralisation defined by a combination of PFN eU <sub>3</sub> O <sub>8</sub> and natural gamma eU <sub>3</sub> O <sub>8</sub> co-existent intervals.                                                     |  |  |  |  |  |  |  |



