

Andromeda Metals Limited ABN: 75 061 503 375

Corporate details:

ASX Code: ADN Cash: ~\$0.125 million (at 31 March 2017) Issued Capital: 405,767,063 ordinary shares

Directors:

Colin G Jackson Non-Executive Chairman

Chris Drown Managing Director

Nick Harding Executive Director and Company Secretary

Jonathan Buckley Non-Executive Director

Contact details:

69 King William Road, Unley, South Australia 5061

PO Box 1210 Unley BC SA 5061

Tel: +61 8 8271 0600 Fax: +61 8 8271 0033

admin@andromet.com.au

www.andromet.com.au

Fact:

The cobalt price has increased from A\$32,000 per tonne one year ago to its current price around A\$74,400 per tonne, an increase of over 130%.

METALS

ASX announcement

11 May 2017

Moonta Copper Gold

(100% owned), South Australia

Significant cobalt associated with Moonta project copper gold deposits

Summary

Driven by rapidly growing demand for electronic energy storage applications, the price of cobalt has more than doubled in the last 12 months to its current price of around A\$74,400 per tonne.

A review of the assay results of Company and historical drill holes on the Moonta copper project has confirmed the presence of significant cobalt at a number of prospects, with the most substantial results at Willamulka and Alford West.

The Willamulka deposit includes a number of cobalt bearing lodes generally coincident with the copper mineralised zone. The cobalt lodes are steeply dipping, traceable for over 800 metres of strike and are open at depth and along strike. Drill intersections include:

- 5m at 0.32% Co from 45m downhole in WAC0133
- 6m at 0.19% Co from 15m downhole in WAC0098
- 9m at 0.09% Co from 47m downhole in WAC0069

At Alford West significant cobalt is present in the Larwood zone, often in association with high grade copper. Drill hits include:

- 4m at 0.25% Co from 76m downhole in MALD-3
- 9m at 0.13% Co from 55m downhole in MALRC-3
- 5m at 0.13% Co from 152m downhole in AWRC002

The recognition of cobalt mineralisation in addition to the proven copper prospectivity of a tenement already well serviced by existing infrastructure enhances the project's potential, and may prompt Andromeda Metals to reconsider the future of the Moonta asset.

The Andromeda Metals non-renounceable Rights Issue (announced 13 April 2017) remains open until 16 May 2017.

Chris Drown Managing Director

Direct enquiries to Chris Drown. Ph (08) 8271 0600 or 0427 770 653.

Introduction

Global cobalt demand is undergoing rapid growth due to the metal's increasing application in rechargeable electronic batteries used in handheld electronic devices, electric vehicles and home solar and grid storage units.

The increased demand has seen the price of cobalt more than double from around A\$32,000 per tonne in May 2016 to levels around A\$74,400 per tonne at present. By comparison, copper is currently trading around A\$7,480 per tonne.

Andromeda Metals holds the 819km² Moonta copper project on South Australia's Yorke Peninsula (Figure 1). Geologically, the deposits in the Moonta district are of Iron Oxide Copper Gold (IOCG) style. Economically, copper and gold are generally the most significant metals in an IOCG deposit, however a large range of other metals, including cobalt, can also be present.

A review of exploration data from the Moonta project confirms that cobalt is present in significant concentration, with the most significant results from the Willamulka and Alford West prospects.

Based on prevailing market prices for copper and cobalt, and assuming both metals are recoverable, a mineralisation grade of 0.10% cobalt is approximately equivalent in metal value to a grade of 1% copper.

The mineralogy and recovery of the cobalt bearing mineral phases at both Willamulka and Alford West remains to be determined.

The Willamulka deposit

The Willamulka deposit is located in the north east of the Moonta Project (Figure 1).

The Company discovered significant copper and gold mineralisation at Willamulka in 2010, with systematic drilling subsequently delineating a coherent copper-gold deposit extending for over 1,200 metres of strike and remaining open both at depth and along strike to the northeast and southwest.

Significant historical copper-gold drill intersections at Willamulka include: 23 metres at 1.02% Cu and 0.93g/t Au; 35 metres at 1.14% Cu and 0.72g/t Au; and 17 metres at 1.07% Cu and 2.62g/t Au.

During the drilling campaigns at Willamulka, drill samples were assayed not just for copper and gold, but for a wide range of metals, including cobalt.

A review of the Willamulka drillhole assay database confirms the presence of cobalt mineralisation at grades considered to be of potential economic significance, particularly as the cobalt is often coincident with copper and gold mineralisation.

Table 1 (on page 5 of this report) presents a list of cobalt intersections, with standout results including:

5 metres at 0.32% Co, 6 metres at 0.19% Co, and 9 metres at 0.09% Co.

In cross section (Figure 2) cobalt is interpreted to occur in sub-vertical lodes generally internal to the copper-gold mineralised zone.

Figure 1: Moonta copper gold project location plan

Figure 2: Willamulka deposit cross section.

The cobalt-bearing lodes at Willamulka can be traced along strike for a distance of 800 metres, with the lodes remaining open at depth and to the southwest. A preliminary 3-dimensional interpretation of the cobalt lodes, super-imposed on the broader copper-gold deposit, is shown in Figure 3.

Figure 3: Willamulka deposit oblique view. Copper body in red, cobalt lodes in blue.

The Alford West deposit

Alford West is located 12 kilometres west of Willamulka (Figure 1). In 2013 the Company reported high grade copper-gold drill results from Alford West, leading to the delineation of a deposit extending for a strike length of 1,350 metres and open at depth.

Significant copper-gold drill intersections at Alford West include:

20 metres at 4.20% Cu and 0.27g/t Au; 45 metres at 1.56% Cu and 1.83g/t Au; and 16 metres at 2.38% Cu and 0.18g/t Au

The deposit comprises the eastern Larwood zone and western Bruce zone, with the highest grade cobalt results present in holes drilled at Larwood. Intersections are listed in Table 1 on page 5 of this report and include: 4 metres at 0.25% Co, 9 metres at 0.13% Co, and 5 metres at 0.13% Co.

At Larwood, significant cobalt intersections extend across 500 metres of strike and, like the copper and gold zones, remain open at depth. As at Willamulka, cobalt at Alford West is generally closely associated with copper and gold mineralisation, often of high grade, as detailed in Table 1.

Summary

Andromeda Metals has been pursuing the partial or full sale of the Moonta copper project with the intention of directing the proceeds largely to its Wudinna Gold Camp endeavours.

As previously advised, a party with whom the Company had been negotiating a Heads of Agreement for some time failed to meet various deadlines for reasons not related to the project, and discussions with this party were discontinued in early 2017.

Negotiations with a second group interested in the project are currently underway, however no binding agreement has been reached at this stage.

The recognition of cobalt mineralisation at the Willamulka and Alford West deposits, in addition to the significant copper and gold prospectivity, enhances the potential value of a project already well serviced by existing infrastructure.

Prospectus

New Shares and New Options are being offered by Andromeda Metals Limited under a non-renounceable Rights Issue pursuant to a Prospectus lodged with ASIC on 13 April 2017 and a Supplementary Prospectus lodged on 26 April 2017 (together 'the Prospectus') and are available at <u>www.andromet.com.au</u>. Shareholders wishing to acquire the New Shares and New Options should read the Prospectus in full and carefully consider the information provided before making an investment decision. A shareholder wishing to acquire New Shares and New Options can only do so by completing the Entitlement and Acceptance Form accompanying the Prospectus.

Competent Person Statement

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Chris Drown, a Competent Person, who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Drown is employed by Drown Geological Services Pty Ltd and consults to the Company on a full time basis. Mr Drown has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Drown consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Prospect	Hole ID	East	North	RL	Azimuth	Dip	Final	From	То	Interval	Со	Cu	Au
		(mga94)	(mga94)	74	(mga94)		depth	(m)	(m)	(m)	%	%	g/t
	WAC0028	764910	6243891	71	135	-60	36	17	20	3	0.05	0.75	0.56
								35	36	1	0.11	0.52	0.07
	WAC0029	764897	6243902	71	135	-60	75	46	55	9	0.05	0.35	0.04
	WAC0040	765109	6244190	69	135	-60	38	33	36	3	0.05	0.13	<0.01
	WAC0046	764928	6243911	72	135	-60	30	18	21	3	0.07	0.34	0.01
	WAC0047	/64919	6243923	/2	135	-60	35	21	24	3	0.05	0.32	<0.01
	WAC0058	765102	6244236	69	135	-60	82	60	63	3	0.05	<0.01	<0.01
	WAC0059	764930	6243912	72	135	-60	101	16	22	6	0.07	0.39	<0.01
	WAC0060	764920	6243922	72	135	-60	113	53	57	4	0.06	1.09	1.42
	WAC0062	764887	6243955	/1	135	-60	120	48	51	3	0.06	0.09	0.25
	WAC0067	764887	6243866	59	135	-60	120	43	45	2	0.08	0.47	0.01
	WAC0069	764851	6243899	70	135	-60	120	47	50	9	0.09	0.22	0.11
	WAC0085	764647	6243754	58	135	-60	15	44	47	3	0.07	0.22	0.10
	WAC0097	764953	6243940	70	135	-00	76	42	48	6	0.00	0.35	0.02
	WAC0038	704941	0243930	/0	155	-00	/0	15	42	2	0.19	0.34	0.02
ka								68	76	2	0.00	0.90	0.22
	WAC0099	764929	6243970	70	135	-60	78	50	54	4	0.07	0.00	0.03
am	WAC0100	765008	624/0/9	69	135	-60	75	24	29	4	0.07	0.76	<0.04
Vill	WAC0105	765067	6244130	71	135	-60	67	40	42	2	0.13	0.36	0.02
5	WAC0129	764746	6243808	69	135	-60	103	99	101	2	0.07	0.04	0.01
	WAC0130	764817	6243875	67	135	-60	118	53	56	3	0.05	0.17	1.06
	WAC0131	764866	6243977	65	135	-60	116	100	106	6	0.08	0.05	0.02
								110	115	5	0.12	0.11	0.02
	WAC0132	764911	6243931	65	135	-60	96	27	28	1	0.17	0.71	<0.01
								71	73	2	0.09	0.25	0.11
	WAC0133	765016	6243960	66	135	-60	84	45	50	5	0.32	0.03	<0.01
	WAC0135	764983	6243995	66	135	-60	93	17	18	1	0.11	0.91	< 0.01
	WAC0136	764965	6244014	66	135	-60	81	30	33	3	0.09	1.91	<0.01
								48	55	7	0.04	0.22	0.10
	WAC0149	764598	6243733	66	135	-60	76	50	54	4	0.09	0.24	0.03
	WLMDD001	764633	6243790	67	145	-60	242.3	108	110	2	0.14	0.16	0.27
								195	196	1	0.11	0.63	0.69
	WLMDD002	764681	6243828	73	120	-59	234.7	188	191	3	0.06	0.19	0.08
	MPD-14	764928	6243873	68	315	-70	115	48	64	16	0.04	0.22	1.45
								82	86	4	0.06	0.08	0.02
	ALWAC0006	753727	6248227	36	180	-60	78	57	65	8	0.06	4.67	0.21
	ALWAC0007	753729	6248188	35	180	-60	81	34	40	6	0.07	9.52	0.55
	ALWAC0008	753788	6248155	34	180	-60	60	4	5	1	0.19	0.05	0.01
	ALWAC0019	753878	6248207	36	180	-60	72	35	38	3	0.09	0.88	0.17
0	ALWAC0023	753930	6248208	36	180	-60	56	52	53	1	0.19	2.58	0.16
ŭ	ALWAC0031	754100	6248125	36	180	-60	60	19	24	5	0.07	0.71	0.55
ž	ALWAC0038	753784	6248212	35	180	-60	90	44	49	5	0.05	1.54	0.23
po	ALWAC0039	753785	6248228	36	180	-60	99	76	82	6	0.05	0.48	0.18
Š	ALWAC0043	753732	6248195	35	180	-60	90	43	47	4	0.07	4.81	0.63
ar	ALWAC0044	753731	6248218	35	180	-60	90	50	56	6	0.05	4.57	0.23
	ALWAC0102	754119	6248208	40	182	-60	79	57	61	4	0.08	0.39	0.11
est	ALWAC0107	753830	6248231	35	182	-60	94	63	69	6	0.05	0.65	0.15
Š	ALWAC0253	753830	6248220	37	180	-60	80	54	58	4	0.06	3.55	0.25
p	ALWAC0289	752767	6248332	30	180	-60	141	123	124	1	0.17	0.07	0.03
fo	AWRC002	753750	6248248	36	180	-60	191	101	108	7	0.05	0.38	0.23
Alt	AWRC002	752622	6240255	25	400		220	152	157	5	0.13	0.70	0.30
	AWRC004	753600	6248255	35	180	-60	228	170	176	6	0.11	0.69	0.14
	MALD-3	753785	6248202	38	180	-60	214.7	76	80	4	0.25	0.74	<0.01
	MALRC-1	753786	6248218	38	180	-60	12	4/	53	6	0.05	2.12	0.11
	MALRC-2	753787	6248236	38	180	-60	108	93	105	12	0.06	0.42	0.22
	MALRC-3	/53/86	6248183	37	180	-60	69	55	64	9	0.13	0.75	0.02

Table 1: List of cobalt-bearing drill intersections - Willamulka and Alford West (Larwood Zone) deposits

Intersections calculated by averaging 1m or 3m composite drill samples. Cu and Co determined by four acid digest followed by ICP-AES finish. Overrange Cu (>1%) determined by AA finish. Au determined by fire assay fusion followed by ICP-AES finish. Introduced QA/QC samples indicate acceptable analytical quality. Intersections are downhole lengths using 0.05% Co cut off, grade x width product >0.1% Co, and maximum 3m internal dilution.

1 JORC CODE, 2012 EDITION - TABLE 1

1.1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary		
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or hand held XRF instruments, etc) These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Aircore blade, reverse circulation hammer, and diamond core drilling was used to obtain 3m or 1m samples which were prepared to produce sub samples for lab assay (30g charge for gold fire assay, and 0.25g charge for a suite of 22 metals including cobalt for ICP-AES). Aircore samples were collected as grab samples. Reverse circulation samples were riffle split. Diamond core was sawn in half then crushed. 		
Drilling Techniques	• Drill type (air core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face sampling bit or other type, whether core is orientated and if so, by what method, etc).	 Drill method includes aircore blade in unconsolidated regolith, and reverse circulation hammer and diamond coring in hard rock. Aircore hole diameters are 90mm. RC hole diameters are 150mm and diamond core diameter was NQ2. 		
Drill Sample Recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the sample. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of coarse/fine material. 	 Qualitative assessment of sample recovery and moisture content of all drill samples is recorded. Sample system cyclone cleaned at end of each hole and as required to minimise down-hole and cross-hole contamination. No relationship is known to exist between sample recovery and grade. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant 	 All samples were geologically logged by on-site geologist, with lithological, mineralogical, weathering, alteration, mineralisation and veining information recorded. The holes have not been geotechnically logged. Geological logging is 		

	intersections logged	qualitative
Sub- sampling techniques and sample preparation	 intersections logged. If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representativity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 qualitative. Diamond core trays and chip trays containing geological sub-samples were photographed at the completion of the drilling program. 100% of any reported intersections (and of all metres drilled) have been geologically logged. Aircore and RC samples averaging 1.5kg were collected for laboratory assay using a trowel or riffle splitter. Dry samples were homogenised by mixing prior to sampling. Core was sawn in half. Laboratory sample preparation includes drying and crushing and pulverising of submitted sample to target of P80 at 75um. Duplicate and standard samples were introduced into samples were introduced into sample stream by the Company, while the laboratory completed double assays on many samples. Both Company and laboratory introduced QAQC samples indicate acceptable analytical accuracy. Laboratory analytical charge sizes are standard sizes and considered adequate for the
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and mode, reading times, calibration factors applied and their derivation, etc. Nature and quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Standard laboratory analyses completed for gold (fire assay) and cobalt and copper (4 acid digest with ICP-AES) and over range (>1%) copper (4 acid digest with AA finish). The laboratory analytical methods are considered to be total. The Company introduced QA/QC samples and the laboratory additionally introduced QA/QC samples (blanks, standards, checks). Both the Company introduced and laboratory introduced QA/QC samples indicate acceptable levels of accuracy and precision have been established.
of sampling	<i>independent or alternative company personnel.</i>	- The Competent person calculated the drill intersection
, , ,		1

,		
and assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical or electronic) protocols. Discuss any adjustment to assay data. 	 tabulated in the table in the report. No twinned holes were drilled in the program the subject of the report. Drill hole collar, geological logs, and selected laboratory sampling intervals are digitally captured on site prior to verification and incorporation into the Company database. Laboratory assay data is merged into the database upon receipt. The database files are backed-up five times per week. Chip tray and core tray samples of drilled geological material are collected for each drill hole and stored long term. No adjustments have been made to any assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars drilled by ADN were pegged using GPS or DGPS instruments with an accuracy better than +/- 5 metres. RC and diamond holes were surveyed using downhole electronic compass instuments. GDA94 (Zone 53) Collar RLs are estimated using a DTM model generated from a high resolution airborne geophysical survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classification applied. Whether sample compositing has been applied. 	 Hole spacings were generally 25 metres apart on lines spaced 50 metres apart at both prospects, which is considered adequate coverage to allow confident interpretation of lithological and grade continuity. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill lines at Willamulka are oriented NW-SE across a NE-SW striking deposit. Lines at Alford West oriented N-S across E-W striking deposit. At both deposits the majority of holes drilled at -60° into lodes interpreted to be steeply dipping giving a sound angle of incidence so as not to result in biased sampling.
Sample security	• The measures taken to ensure sample security.	 Company staff collected all assay samples. Samples submitted to the laboratory samples were

		transported and delivered by Company staff.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data	• There have been no audits or reviews of sampling techniques undertaken.

1.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section may apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements of material issues with third parties such as joint ventures, overriding royalties, native titles interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The area the subject of this report falls within EL 4961, which is 100% owned by Peninsula Resources limited, a wholly owned subsidiary of Andromeda Metals Limited. There are no non govt royalties, historical sites or environmental issues. Underlying land title is Freehold land which extinguishes native title. Compensation agreements were in place with the relevant agricultural landowners at the time the drilling was undertaken. EL 4961 is in good standing.
Exploration done by other parties	• Acknowledgement and appraisal of exploration by other parties.	 The general area the subject of this report has been explored in the past by various companies including Western Mining Corporation, North Broken Hill, Amalg Resources, MIM Exploration, BHP Minerals, and Phelps Dodge Corporation. The Company has reviewed past exploration data generated by these companies.
Geology	• Deposit type, geological setting and style of mineralisation.	 Deposits in the general region are considered to be of Iron Oxide Copper Gold affinity, related to the 1590Ma Hiltaba/GRV tectonothermal event. Cu-Au-Co-Mo-Pb mineralisation is structurally controlled and associated with significant metasomatic alteration of host rocks.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill collar Elevation or RL (Reduced Level – elevation above sea level in meters) of the drill collar. Dip and azimuth of the hole. Down hole length and interception depth. 	• The required information on drill holes which returned material intersections is incorporated into Table 1 of the report. Tabulated intersections calculated using a 0.05% Co lower cutoff grade, and containing up to 3m of internal dilution.

	 Hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• The collar locations of drill holes the subject of the report are shown on Table 1 of the report.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/ or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in some detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Intersections are calculated by simple averaging of 1m, or rarely 3m, assays. Table 1 includes a column of copper equivalent values to assist investors gauge the significance of the cobaklt results. The CuEq formula is disclosed in the notes under Table 1 and is CuEq% = Cu% +(Co% x 10) + (Aug/t x 0.7) which reflects the relative prices these metals were trading at o the reporting date. The formula assumes equal recovery of each metal.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The footnote to Table 1 of the report states that intersections are downhole lengths. The interpreted geometry of the cobalt bearing lodes is reported to be steeply dipping.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Appropriate plans and sections with scales appear as Figures 1 to 3 in the report. A tabulation of intersections appears as Table 1 of the report.
Balanced Reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• The criteria used to determine if an intersection is listed in Table 1 is disclosed in the footnote to the table.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, ground water, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• There is no other meaningful or material exploration data that has been omitted from the report.
Further work	 The nature and scale of planned further work (eg tests of lateral extensions or depth extensions or large scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• The report advises that in light of the significant Co results, the company will reassess its options in respect the Moonta copper project.