

ASX ANNOUNCEMENT

29 May 2017

Focus Minerals Ltd Amended Greenfields Resource Update

On May 24, Focus Minerals Ltd ("Focus") released an announcement that included an update to the Greenfields deposit Mineral Resource estimate, in order to bring it into compliance with JORC 2012. The ASX has determined that updating a Mineral Resource from JORC 2004 to JORC 2012 constitutes a 'material' change and, as such, information that was included in the JORC tables presented on pages 8-21 of the May 24 announcement is required to also be included in the main text (in accordance with ASX Listing Rule 5.8.1).

This announcement replaces the Greenfields Mineral Resource update contained in the May 24 announcement. It differs only by the inclusion of summary information required under LR 5.8.1 (the information was originally included in the tables in accordance with LR 5.8.2) which can be found on pages one to three of this announcement. There is no change to the Mineral Resource estimate classification, tonnes, grade, or ounces.

This announcement also includes a combined Mineral Resource table including recently announced changes to the Greenfields and Brilliant Mineral Resource estimates (See Figure 3 on page 4). It is current at 29 May 2017 and thus replaces all previous versions. For the avoidance of doubt, there are no changes to Mineral Resource classifications, tonnes, grade, or ounces since the last Mineral Resource table shown in the AGM presentation of May 25.

Greenfields Deposit Mineral Resource Update

Focus has upgraded the compliance of its Greenfields deposit to JORC 2012 standards following a review and completion of the Table 1 reporting requirements for the currently reported (JORC 2004 compliant) block model.

The JORC 2012 Greenfields Mineral Resource is reported above a 1g/t cut-off for open pit resources above 265mRL and comprises:

Indicated Resource
 Inferred Resource
 Total Mineral Resource
 1.328Mt at 1.7g/t gold for 72,500 contained ounces
 0.066Mt at 2.0g/t gold for 4,500 contained ounces
 1.394Mt at 1.7g/t gold for 77,000 contained ounces

The Mineral Resource is reported on a dry tonnage basis. See the attached JORC Table 1 for additional details. Discrepancies may occur due to rounding. Historic mining depletion has been taken into account.

JORC 2012 Mineral Resource Summary for Greenfields Deposit

The Greenfields Project forms part of Focus Minerals' tenement portfolio in the highly prospective Coolgardie region of Western Australia. The deposit has previously been an open pit gold producer, mined in stages from 1986 to mid-2013 with production figures of approx. 51,000oz at an average grade of 1.8g/t. Figure 1 presents a plan view of the Greenfields deposit and Figure 2 presents a representative cross section.

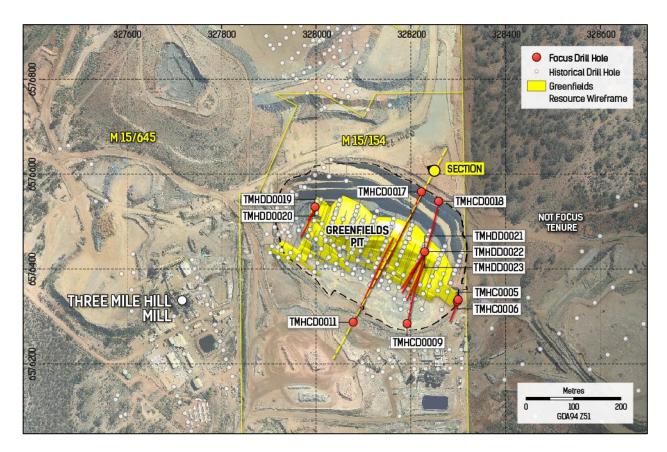


Figure 1: Greenfields Plan View and Selected Hole Traces

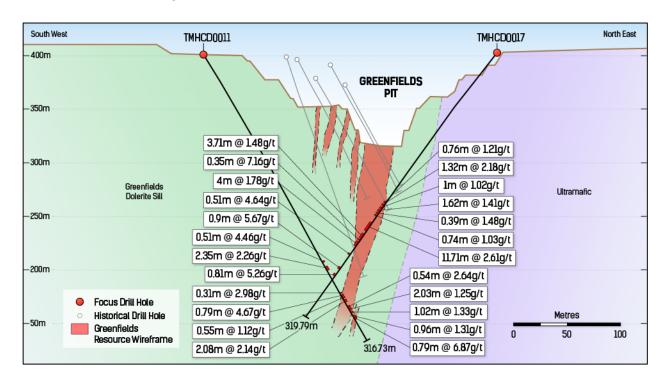


Figure 2: Greenfields Cross Section

All available drilling and historic mining data were used to guide the geologic interpretation for Greenfields, which suggests that most of the mineralisation is in the Three Mile Hill Dolerite unit (specifically "Unit 4"). The mineralised geology interpretation was digitised on a section-by-section basis and only minor deviation of the lode geometry was noted. Historic drilling was primarily via RC methods, although the Focus holes referenced in the original announcement were a mix of RC and

diamond holes. RC sampling was via standard sampling (1m sample intervals through a cone splitter with a face-sampling hammer) and diamond sampling was based on geology intervals with no sample less than 20cm taken. Diamond samples were from ½ core. For the purposes of resource estimation, all samples were composited into regular 2m intervals for consistency. Sample analysis was via standard fire assay using a mixture of 30g and 50g samples. Drill spacing at Greenfields is on 20m-spaced grid lines (oriented 20 degrees azimuth) with collar spacing in the 10-20m range on individual drill lines. Wider-spaced drilling is present at depth up to 40x80m drill spacing.

The resource estimation was based on 158 historic drillholes (96 RC holes, 8 diamond holes and 54 RC/DD holes). Samples within the resource wireframes were composited to 2m intervals to maintain consistency with historic sampling intervals. Top-cutting was used based on Skree plots and Cumulative Frequency Plots and was selected at 25g/t Au, which affected 5 samples in total. Variography was modelled for the major, semi-major and minor axes on the main unit and GEOVIA Surpac Software was used for the estimation using an Ordinary Kriging (OK) technique utilising these variograms. Each domain was estimated separately using its own sample values and no samples were shared between domains. The Resource has been reported above a 1g/t Au cut-off for the open pit above the 265m RL, which is based on preliminary whittle shell optimisations. There is an existing open pit at Greenfields and mining is anticipated to continue by cut-back and open cut extraction. Inhouse metallurgical test work has been conducted on Greenfields during previous mining campaigns. Historically, sample recoveries were in the >90% range and reconciliations were ~96.7% of tonnes, 100.7% of grade and 101% of ounces milled compared with mined between December 2003 and January 2005, which is when the pit was mined by GMC.

Previously, the JORC 2004 Greenfields resource has been reported as a total resource above a 1g/t grade cut-off with no RL cut-offs used. Following preliminary feasibility work, it has been determined the 265mRL is an appropriate RL, for open pit mining considerations, to be reported above. The previously reported JORC 2004 Greenfields resource is tabulated below:

Indicated Resource
 Inferred Resource
 Total (previous) Mineral Resource
 1.898Mt at 1.6g/t gold for 96,000 contained ounces
 0.705Mt at 1.4g/t gold for 32,000 contained ounces
 2.603Mt at 1.5g/t gold for 128,000 contained ounces

Competent Persons Statement

The information that relates to exploration and geological interpretations is based on information compiled by Dr. Wesley Groome who is a Member of the Australian Institute of Geoscientists (AIG). Dr. Groome is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves."

The Mineral Resource estimates were undertaken by, Mr Mark Rigby a former employee of Focus Minerals while he was employed by the compamy. Ms Hannah Kosovich, an employee of Focus Minerals reviewed the geological interpretation, assay QAQC information, estimation methodology and parameters and estimate validation. Ms Kosovich is a Member of the Australian Institute of Geoscientists (AIG) and has sufficient experience to qualify as a Competent Person as defined by the 2012 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves."

Dr Wesley Groome and Ms Hannah Kosovich consent to the inclusion in the report of the matters based on the information in the form and context in which it appears.

Figure 3: Combined Mineral Resources at May 29 2017

	Meas	Measured Resources		Indi	Indicated Resources			Inferred Resources			Total Resources		
	Tonnes '000t	Grade Au g/t	Ounces	Tonnes '000t	Grade Au g/t	Ounces	Tonnes '000t	Grade Au g/t	Ounces	Tonnes '000t	Grade Au g/t	Ounces	
COOLGARDIE GOLD PROJECT													
Tindals Project - UG	268	4.5	39,000	1,872	3.9	234,500	942	4.0	120,000	3,082	4.0	393,500	
Tindals Project - Surface				8,707	2.2	616,500	2,191	2.2	154,500	10,898	2.2	771,000	
Tindals Project	268	4.5	39,000	10,579	2.5	851,000	3,133	2.7	274,500	13,980	2.6	1,164,500	
Bonnie Vale Project				474	9.1	139,000	347	5.0	56,000	821	7.4	195,000	
Lindsays-Bayleys Project				4,350	1.7	238,000	3,327	2.1	229,000	7,677	1.9	467,000	
Three Mile Hill Project				2,122	1.7	113,500	156	1.7	8,500	2,278	1.7	122,000	
Norris Project							2,440	2.2	169,000	2,440	2.2	169,000	
Total Coolgardie	268	4.5	39,000	17,525	2.4	1,341,500	9,403	2.4	737,000	27,196	2.4	2,117,500	
LAVERTON GOLD PROJECT													
Barnicoat Project	390	1.7	21,000	2,486	1.7	135,000	1,803	1.3	74,000	4,679	1.5	230,000	
Burtville Project				1,207	1.4	54,000	708	1.8	41,500	1,915	1.5	95,500	
Central Laverton Project				2,749	2.0	176,500	642	1.9	39,500	3,391	2.0	216,000	
Chatterbox Project	531	2.2	38,000	3,923	2.1	270,000	3,235	2.2	232,000	7,689	2.2	540,000	
Jasper Hills Project - UG				84	4.6	12,000	101	4.0	13,000	185	4.3	25,000	
Jasper Hills Project - Surface	370	1.9	22,000	1,326	1.5	64,000	743	1.9	45,000	2,439	1.7	131,000	
Jasper Hills Project	370	1.9	22,000	1,410	1.7	76,000	844	2.1	58,000	2,624	1.9	156,000	
Lancefield Project - UG				2,037	6.5	427,000	619	7.1	141,000	2,656	6.7	568,000	
Lancefield Project - Surface				72	3.9	9,000	94	6.3	19,000	166	5.2	28,000	
Lancefield Project				2,109	6.4	436,000	713	7.0	160,000	2,822	6.6	596,000	
Total Laverton	1,291	2.0	81,000	13,884	2.6	1,147,500	7,945	2.4	605,000	23,120	2.5	1,833,500	
TOTAL COMBINED RESOURCES	1,559	2.4	120,000	31,409	2.5	2,489,000	17,348	2.4	1,342,000	50,316	2.4	3,951,000	

Competent Person's Statement: The information in the table above relating to Mineral Resources is based on information compiled by Michael Guo (P Geo) who is a member of the Association of Professional Geoscientists of Ontario, Canada, which is a Recognised Professional Organisation (RPO). Mr Guo is employed by Focus Minerals Limited and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Guo consents to the inclusion in this announcement of the matters based on the information compiled by him in the form and context in which it appears. With the exception of the deposits that follow, this information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported. Bonnie Vale was first reported under JORC Code 2012. The Brilliant deposit, which constitutes part of the Tindals project, was updated to comply with JORC Code 2012 on 7 April 2017 and the Greenfields Deposit, which constitutes part of the Three Mile Hill project, was updated to comply with JORC Code 2012 on 24 May 2017.

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques	 This report relates to results from Reverse Circulation (RC) drilling and diamond core drilling. The information of sampling techniques below applies to the drill holes drilled by Focus Minerals (FML) only. RC percussion drill chips were collected through a cyclone and cone splitter. Samples were collected on a 1m basis. Diamond core was sampled across identified zones of mineralisation by site geologists, the sample widths varied between a minimum of 0.2m and a maximum of 1m. RC chips were passed through a cone splitter to achieve a sample weight of approximately 3kg. The splitter was levelled at the beginning of each hole using a bullseye level. The spoils were collected in green bags at 1m intervals. At the assay laboratory all samples were oven dried, crushed to a nominal 10mm using a jaw crusher (core samples only) and weighed. Samples in excess of 3kg in weight were riffle split to achieve a maximum 3kg sample weight before being pulverised to 90% passing 75µm. The diamond core was marked up for sampling by the supervising geologist during the core logging process, with sample intervals determined by the presence of mineralisation and/or alteration. The core was cut in half using an Almonte automatic core saw and the same half of the core was routinely sent to the laboratory for analysis. Some of the diamond core has been ¼ core sampled, although this is only in a minority of cases. Historic RC holes have been sampled on 1m or as 2m composite. It is unsure how the composite sampling for pre-Focus drilling would have been undertaken.
Drilling techniques	 All FML drilling was completed using an RC face sampling hammer or NQ2/HQ3 size diamond core. Where achievable, all drill core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling initially using an electronic multi-shot (EMS) camera and since Sept 2013 a north- seeking gyroscope; holes were surveyed open-hole prior to 2017. Since late 2016, all holes were surveyed using various gyroscopes (non-north-seeking paired with an azimuth aligner and north-seeking) by the drill contractors whilst drilling.
Drill sample recovery	 FML sample recovery was recorded by a visual estimate during the logging process. All FML RC samples were drilled dry whenever possible to maximise recovery, with water injection on the outside return to minimise dust. Historic drill recovery has been sporadically recorded.
Logging	 The information of logging techniques below applies to the drill holes drilled by FML only. All core samples were oriented where possible, marked into metre intervals and compared to the depth measurements on the core blocks. Any loss of core was noted and recorded in the drilling database. All RC samples were geologically logged to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present. All diamond core was logged for structure and geologically logged using the same system as that for RC. The logging information was transferred into the company's drilling database once the log was complete. Logging was qualitative, however the geologists often recorded quantitative mineral percentage ranges for the sulphide minerals present. Diamond core was photographed one core tray at a time using a standardised photography jig. More recently, samples from RC holes were archived in standard 20m plastic chip trays.

- The entire length of all holes are logged.
- Historic RC holes have been logged at 1m intervals to record weathering, regolith, rock type, colour, alteration, mineralisation, structure and texture and any other notable features that are present.
- Original drill logs have been viewed and used to validate data stored in acQuire for a majority of the pre-FML drilling.

Sub-sampling techniques and sample preparation

- The information of sub-sampling and sample preparation below applies to the drill holes drilled by FML only.
- Core samples were taken from half core, cut using an Almonte automatic core saw.
 The remainder of the core was retained in core trays tagged with a hole number and metre mark.
- RC samples were cone split to a nominal 2.5kg to 3kg sample weight. The drilling method was designed to maximise sample recovery and delivery of a clean, representative sample into the calico bag.
- Where possible, all RC samples were drilled dry to maximise recovery. The use of a
 booster and auxiliary compressor provide dry sample for depths below the water
 table. Sample condition was recorded (wet, dry or damp) at the time of sampling and
 recorded in the database.
- The samples were collected in a pre-numbered calico bag bearing a unique sample ID. Samples were crushed to 75µm at the laboratory and riffle split (if required) to a maximum 3kg sample weight. Gold analysis was initially by 40g aqua regia for the composite samples then 40g Fire Assay for individual samples with an ICP-OES or AAS Finish.
- The assay laboratories' sample preparation procedures follow industry best practice, with techniques and practices that are appropriate for this style of mineralisation. Pulp duplicates were taken at the pulverising stage and selective repeats conducted at the laboratories' discretion.
- Earlier FML QAQC checks involved inserting a standard or blank every 10 samples in RC and taking a field duplicate every 20 samples in RC. Field duplicates were collected from the cone splitter on the rig. Diamond core field duplicates were not taken, a minimum of one standard was inserted for every sample batch submitted. In more recent drilling no blanks were submitted, only standards every 25 samples with a duplicate taken off the rig every 20th sample.
- Regular reviews of the sampling were carried out by the supervising geologist and senior field staff, to ensure all procedures were followed and best industry practice carried out.
- The sample sizes were considered to be appropriate for the type, style and consistency of mineralisation encountered during this phase of exploration.

Quality of assay data and laboratory tests

- The assay method and laboratory procedures were appropriate for this style of mineralisation. The fire assay technique was designed to measure total gold in the sample.
- No geophysical tools, spectrometers or handheld XRF instruments were used.
- The QA/QC process described above was sufficient to establish acceptable levels of accuracy and precision. All results from assay standards and duplicates were scrutinised to ensure they fell within acceptable tolerances.
- Very little in the way of quality control data is available from sampling of the historic drilling that currently defines the Greenfields Resource. Drilling by FML aimed to confirm the geometry of the ore envelope and grade tenor encountered in historic drilling at Greenfields.

Verification of sampling and assaying

- Significant intervals were visually inspected by company geologists to correlate assay results to logged mineralisation. Consultants were not used for this process.
- Normally, if old historic drilling was present, twinned holes are occasionally drilled to test the veracity of historic assay data; however, no twinned holes were drilled during this program.
- Primary data is sent in digital format to the company's Database Administrator (DBA)
 as often as was practicable. The DBA imports the data into an acQuire database, with
 assay results merged into the database upon receipt from the laboratory. Once
 loaded, data was extracted for verification by the geologist in charge of the project.

	 Historic holes were validated against paper copies and WAMEX reports where possible. No adjustments were made to any current or historic data. If data could not be validated to a reasonable level of certainty it was not used in any resource estimations.
Location of data points	 FML drill collars were surveyed after completion, using a DGPS instrument. All drill core was oriented by the drilling contractor using an Ezy-mark system. Most holes were surveyed upon completion of drilling. Initially an electronic multi-shot camera was used until Sept 2013 when a north-seeking gyroscope tool was used. Holes were surveyed open-hole prior to 2016. Since late 2016, most drillholes were surveyed using various gyroscope systems (non-north-seeking gyroscopes paired with azimuth aligners and north-seeking gyroscopes) by the drillers whilst drilling, otherwise surveyed open hole using a north-seeking gyroscope. Since the start of 2017, gyroscopes were used for "single shot" surveys whilst drilling, otherwise a single shot Eastman camera downhole survey was used. All coordinates and bearings use the MGA94 Zone 51 grid system. FML utilises Landgate sourced regional topographic maps and contours as well as internally produced survey pick-ups produced by the mining survey teams utilising DGPS base station instruments. Historic hole collar survey methods are unknown although Gold Mines Coolgardie JV indicates collars were surveyed by company survey.
Data spacing and distribution	 At Brilliant, drill spacing within the resource area is a combination of 20mx20m, 20mx40m and 40mx40m. Outside of the resource area, exploration holes are more irregularly spaced. At Bonnie Vale, drill spacing within the resource area is generally 40mx40m although some exploration step-out holes are more irregularly distributed. At Lindsays North, drill spacing is irregular. At Greenfields, drilling has been conducted on 20m spaced grid lines on sections oriented across strike of the ore zone at an azimuth of either 20° or 200° and at various dips, with 10-20m collar intervals on section. Wider-spaced drilling exists at depth up to as wide as 40x80m.
Orientation of data in relation to geological structure	 Drilling was designed based on known geological models, field mapping, verified historical data and cross-sectional interpretation. Where achievable, drill holes were oriented at right angles to strike of deposit, with dip optimised for drill capabilities and the dip of the ore body. Where drill holes are at a low angle to the known mineralisation trend, true widths are re-calculated based on the geology interpretation.
Sample security	 All samples were reconciled against the sample submission with any omissions or variations reported to FML. All samples were bagged in a tied numbered calico bag, grouped into green plastic bags. The bags were placed into cages with a sample submission sheet and delivered directly from site to the Kalgoorlie laboratories by FML personnel on a daily basis. Historic sample security is not recorded.
Audits or reviews	 A review of sampling techniques was carried out by rOREdata Pty Ltd in late 2013 as part of a database amalgamation project. Their only recommendation was to change the QA/QC intervals to bring them into line with the FML Laverton system, which uses the same frequency of standards and duplicates but has them inserted at different points within the numbering sequence. At Greenfields, significant data validation was completed by consultants Hellmann and Schofield in 2005 as part of a resource estimate.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	Commentary
Mineral tenement and land tenure status Exploration	 All exploration was conducted on tenements 100% owned by Focus Minerals Limited or its subsidiary companies Focus Operations Pty Ltd. All tenements are in good standing. There are currently no registered Native Title claims over the Coolgardie project areas. Brilliant Project
done by other parties	 Brilliant has been explored and mined by various parties over time. The first phase of mining is believed to have taken place in the early twentieth century and would have consisted of prospecting shafts and limited underground mining. Mines Department records document treatment of 60 tonnes of ore producing 6.97oz of gold up to 1935. No other production is recorded. Open pit mining of the prospect commenced in the 1970's with a number of parties processing ore through the Coolgardie State Battery. In 1980 a treatment plant was constructed at Brilliant by Tryaction Pty Ltd, who produced from an open pit. In the mid 1980's Electrum NL bought into the project, forming a joint venture with MC Mining. They expanded the treatment plant and continued open pit mining in the Brilliant area. Recorded production by Electrum/MC Mining is 87,986 tonnes at 3.2 g/t Au for 9,000 ounces with a stripping ratio of 12.7:1 (Kirkpatrick, 1995). The project was subsequently purchased by Goldfan Limited (a wholly owned subsidiary of Herald Resources Ltd) in 1991 and incorporated into the Tindals Project. They initiated drilling programs which increased the known extent of mineralisation and completed further open cut mining to its present limits in the early 2000's. Table 2 in the FML Combined Annual Report of 2008 states an estimated total production from Brilliant Pit of in excess of 1.1Mt @ 2.45g/t for 88,000 ounces. Bonnie Vale Project Bonnie Vale is the site of a number of historic workings including the Varischetti Mine (Westralia). Modern exploration has been conducted by Coolgardie Gold NL, Gold Mines of Coolgardie and Focus. Lindsays North Project Lindsays North has several small historic diggings at surface of unknown age. Scout RC drilling has been completed at Lindsays North by Coolgardie Gold NL and Focus. Greenfields Project Greenfields is a site of numerous historic workings including small pits and shafts, however no production figures are available for these wo
Geology	• The deposit lies on the western margin of the Archaean Norseman – Menzies Greenstone Belt. Host rocks at Brilliant are a sequence of Archaean Basalts and Ultramafics, which have been intruded by a suite of porphyry dykes (also described as granodiorites). The porphyries host the bulk of the mineralisation, occurring in two orientations, steeply dipping (70 - 80°) with an average width of 3 to 5m, or flatter dipping (20 - 40°) with widths of up to 2m. Mineralisation consists of a stock work of quartz / sulphide micro-veining and albitic alteration of the porphyry. **Bonnie Vale Project**

Locally, the geology is dominated by the Bonnie Vale tonalite, with an ultramafic to
the east and west of the tonalite in structural contact. This ultramafic has been logged
as a cargonate-altered ultramafic and described as a komatiite in Halberg's regional
mapping. Mineralisation is hosted within large (strike length > 300m) quartz reefs
which range in thickness from centimetre scale to several metres. The known reefs
strike sub-parallel to the edge of the tonalite, with the main orientations being an
easterly dip (e.g. Westralia) or northeast (Bonnie Vale, Quarry Reef) of 40 to 60
degrees.

Lindsays North Project

• Lindsays North is located along the contact between a hangingwall ultramafic unit and a footwall basalt unit, which has been intruded by a suite of late felsic porphyry dykes. Mineralisation is hosted within or adjacent to the felsic porphyries. These felsic porphyries are persistent along strike within the contact zone for several kilometres to the east and south and host significant mineralisation at Bayleys approximately 1.5km along strike to the southeast.

Greenfields Project

• The Greenfields deposit is located within the Greenfield Dolerite Sill within the Coolgardie Greenstone Belt. There are three rock types present in the pit: dolerite, felsic volcaniclastics (sediments) and ultramafics. The dolerite is sub-divided into four separate units known as the unit 3, 4, 5 and 6 in the pit area. These are separated on mineralisation, alteration, veining and grain size variations. These units all have a WNW strike and steep dip with the gold mineralisation best developed within the unit 4 dolerite, with minor occurrences located in units 3 and 5. Within the dolerite sill are shallow to moderately, NE-NW dipping quartz veins which often display higher grade gold mineralisation with visible gold identified in some drill core samples. Sulphides evident in logging include arsenopyrite and pyrrhotite. The dolerite sill and felsic volcaniclastics of the Kurrawang Formation are separated by the Greenfields Fault which runs through the pit at 280-290° azimuth.

Drill hole Information

D	Drillholes completed since the previous exploration update						
		В	rilliant F	roject			
Hole ID	Easting	Northin g	RL	Depth	Azi	Dip	Hole Type
TND17030*	326272	6572273	409.7	550.4	52	-55	RC/DD
TND17032	326708	6572559	433.1	54	240	-50	RC
TND17033	326096	6572538	409.6	300	67	-55	RC
TND17034	326493	6572820	406.4	450.6	246	-64	RC/DD
TND17035	326321	6572326	410.6	300	67	-55	RC
TND17036	326397	6572102	413.8	210	70	-55	RC
TND17037	326319	6572153	411.0	294	70	-55	RC
TND17038	326206	6572497	408.1	200	73	-54	RC
TND17039	326168	6573098	406.7	115	70	-88	RC
TND17040	326290	6573077	406.5	198	251	-60	RC
TND17041	326394	6573106	405.1	144	253	-54	RC
TND17042	326314	6573114	405.6	250	253	-55	RC
TND17043	326584	6572499	415.8	459.6	241	-65	RC/DD
TND17044	326598	6572601	417.6	555.7	251	-69	RC/DD
TND17045	326258	6573193	405.8	105	249	-55	RC

LND17003	325466	6575854	418.0	198	208	-60	RC
LND17001 LND17002	325694 325531	6575668 6575837	418.0 416.85	120 159	221	-60 -60	RC RC
Hole ID	Easting	Northin g	RL	Depth	Azi	Dip	Hole Type
11.1.15				h Project		D:	
BONCD077	323830	6584499	389.0	328.3	270	-54	RCDD
BONCD075	323992	6584206	395.0	462.7	245	-60	RC/DD
BONC164	324525	6584089	383.0	216	219	-75	RC
BONC163	324511	6584152	383.0	281	221	-70	RC
BONC162	324545	6584029	383.0	300	220	-60	RC
BONC160	324444	6584306	384.0	420	220	-65	RC/DD***
Hole ID	Easting	Northin g	RL	Depth	Azi	Dip	Hole Type
		Bor	nie Vale	Project			
TND17064	326352	6572116	412.0	210	70	-55	RC
TND17063	326307	6572116	411.0	300	70	-60	RC
TND17062	326373	6572002	414.0	300	90	-55	RC
TND17061	326422	6571929	415.0	102	90	-55	RC
TND17060	326382	6571934	414.0	198	95	-55	RC
TND17059	326586	6571992	421.8	282	274	-54	RC
TND17058	326586	6572162	422.2	228	252	-65	RC
TND17057	326388	6573029	405.3	258.5	252	-60	RC/DD
TND17056	326398	6572990	404.9	246	250	-64	RC
TND17055	326564	6572753	408.9	606.6	250	-70	DD
TND17054	326451	6572913	404.7	372.9	245	-65	RC/DD
TND17053	326481	6573004	404.0	462.6	250	-59	RC/DD
TND17052	326595	6573003	404.1	54	249	-55	RC/DD**
TND17051	326278	6573357	408.6	198	252	-59	RC
TND17050	326247	6573430	409.4	252	250	-60	RC
TND17049	326221	6573542	411.0	250	251	-60	RC
TND17047	326304	6573006	404.9	198	252	-60	RC
TND17046 TND17047	326257 326420	6573269 6573186	405.5	126	261 252	-65 -60	RC RC

 *87.9m added to this hole subsequent to previous release; **RC pre-collar completed, diamond tail in progress; ***RC Pre-collar drilled in 2016

Historic Drillholes used for the Greenfields Resource Update							
Hole ID	Easting	Northing	RL	Depth	Azimuth	Dip	Company
GFC001	327999.72	6576518.71	399.6	40	20	-60	CGNL
GFC002	327992.68	6576500.68	400.5	40	20	-60	CGNL
GFC003	327985.85	6576482.23	399.5	40	20	-60	CGNL
GFC004	328050.21	6576544.24	399.8	40	20	-60	CGNL
GFC005	328043.50	6576525.27	399.6	40	20	-60	CGNL
GFC006	328036.86	6576506.60	399.3	40	20	-60	CGNL

		1	ı	ı	l	ı	
GFC007	328030.01	6576487.87	399.1	40	20	-60	CGNL
GFC008	328088.27	6576530.97	400.1	40	20	-60	CGNL
GFC009	328081.94	6576512.81	399.7	40	20	-60	CGNL
GFC010	328075.00	6576493.98	399.2	40	20	-60	CGNL
GFC011	328068.14	6576475.45	398.9	40	20	-60	CGNL
GFC013	328120.36	6576499.69	399.9	40	20	-60	CGNL
GFC014	328113.79	6576479.96	399.4	40	20	-60	CGNL
GFC015	328106.88	6576461.97	398.9	40	20	-60	CGNL
GFC017	328157.50	6576486.12	400.5	40	20	-60	CGNL
GFC018	328150.66	6576467.76	399.8	40	20	-60	CGNL
GFC019	328143.89	6576448.66	399.2	40	20	-60	CGNL
GFC021	328195.75	6576473.68	400.3	40	20	-60	CGNL
GFC023	328181.51	6576435.62	399.2	40	20	-60	CGNL
GFC025	328226.61	6576441.98	399.6	40	20	-60	CGNL
GFC026	328219.45	6576423.58	399	40	20	-60	CGNL
GFC027	328040.34	6576515.76	399.4	40	20	-60	CGNL
GFC028	328033.61	6576497.28	399.1	50	20	-60	CGNL
GFC030	328078.64	6576502.91	399.4	40	20	-60	CGNL
GFC031	328071.61	6576484.28	397.8	50	20	-60	CGNL
GFC033	328117.15	6576489.39	399.8	48	20	-60	CGNL
GFC034	328110.49	6576471.27	399.1	50	20	-60	CGNL
GFC036	328154.19	6576477.30	400.1	40	20	-60	CGNL
GFC037	328147.11	6576458.15	399.5	50	20	-60	CGNL
GFC039	328192.53	6576464.53	400	40	20	-60	CGNL
GFC040	328185.24	6576445.45	399.4	50	20	-60	CGNL
GFC042	328114.33	6576479.35	399.4	50	38.8	-60	CGNL
GFC043	328076.73	6576492.15	399.2	50	38.8	-60	CGNL
GFC044	328038.10	6576505.84	399.3	50	20	-60	CGNL
GFC047	328230.12	6576450.71	400	42	20	-60	CGNL
GFC048	328222.80	6576432.26	399.3	50	20	-60	CGNL
GFC050	328188.64	6576454.74	399.5	50	20	-60	CGNL
GFC051	328151.01	6576470.01	399.9	50	38.8	-60	CGNL
GFC052	328047.17	6576535.09	399.8	40	20	-60	CGNL
GFC054	328085.35	6576521.50	400	40	20	-60	CGNL
GFC061	328260.02	6576419.25	399.3	50	20	-60	CGNL
GFC062	328254.50	6576407.70	399.3	50	20	-60	CGNL
GFC063	328252.72	6576400.65	398.8	50	20	-60	CGNL
GFC065	328161.42	6576495.86	400.8	40	20	-60	CGNL
GFC003	328276.91	6576350.23	397.5	60	20	-60	CGNL
GFC077	328041.94	6576409.69	399.2	50	20	-60	CGNL
GFC119	327987.47	6576426.52	400	131	20	-60.24	CGNL
GFC119	328000.09	6576461.67	397.9	150	24.99	-59.05	CGNL
GFC120	328027.61	6576424.31	400	149	0	-60	CGNL
GFC121	328036.57	6576448.48	397.2	149	20.25	-60.11	CGNL
GFC122	328065.43	6576410.46	398.9	149	22.04	-60.09	CGNL
GFC123 GFC124							CGNL
	328073.87	6576433.42	396.1	149	19.29	-60 -60.87	CGNL
GFC125	328099.41	6576393.21	398.4	150	17.3	-60.87	
GFC126	328110.15	6576415.17	391.8	149	21.68	-59.08	CGNL

	1	1	1	1	1	1	
GFC127	328137.22	6576373.55	397.8	149	21.95	-59.17	CGNL
GFC128	328148.40	6576405.41	391.3	138	24.49	-59.97	CGNL
GFC129	328175.14	6576359.59	397.6	150	21.24	-59.36	CGNL
GFC130	328184.17	6576385.37	391.1	143	20.91	-60.28	CGNL
GFC131	328003.02	6576411.07	400.3	91	0	-60	CGNL
GFC132	328039.81	6576398.46	400.5	152	19.62	-63.1	CGNL
GFC133	328078.41	6576388.19	399.1	149	21.18	-60.68	CGNL
GFC134	328223.49	6576314.02	397.1	153	17.78	-59.81	CGNL
GFC135	328152.12	6576357.42	397.7	149	22.37	-60.18	CGNL
GFC136	328186.88	6576333.97	397.4	152	20.53	-60.27	CGNL
GFC143	327982.43	6576470.09	398.2	143	0	-60	CGNL
GFC144	328265.94	6576312.28	396.9	130	20.01	-60.3	CGNL
GFC145	328208.73	6576335.37	397.2	149	19.26	-59.8	CGNL
GFC146	328257.05	6576353.86	391.2	70	20.56	-60.48	CGNL
GFC148	327981.76	6576468.84	398.4	142	26	-69.5	GMC
GFC149	328165.34	6576335.62	397.7	202	21	-59.5	GMC
GFC150	328132.52	6576361.08	398	128	20	-65.5	GMC
GFC151	328114.77	6576367.15	398.5	157	20	-63.75	GMC
GFC152	328093.54	6576378.39	399.1	175	21	-64	GMC
GFC153	328056.03	6576386.43	399.7	200	20	-60.75	GMC
GFC154	328020.89	6576405.19	400.9	195	19	-60	GMC
GFC155	327995.28	6576392.83	400.6	130	19	-60	GMC
GFC156	328179.09	6576313.55	397.9	234	19	-60	GMC
GFC157	328114.31	6576364.11	398.5	220	25	-69.5	GMC
GFC158	328018.61	6576457.35	397.8	198	21	-81	GMC
GFC159	328198.16	6576309.17	397.6	220	23	-59	GMC
GFC160	327964.80	6576426.04	400.1	120	23.48	-59.44	GMC
GFC161	327945.68	6576432.68	400.6	114	20.75	-58.77	GMC
GFC162	327926.72	6576439.10	400.8	147	18.39	-59.38	GMC
GFC164	327940.98	6576422.02	400.4	100	189.21	-89.31	GMC
GFC165	327920.24	6576423.66	400.8	80	12.45	-79.36	GMC
GFC166	327902.91	6576433.30	400.9	80	14.84	-79.55	GMC
GFC168	327960.83	6576419.54	400.4	120	27.47	-79.04	GMC
GFD029	328026.82	6576478.55	399.2	93	18.89	-60	CGNL
GFD032	328064.59	6576465.33	399	95.2	18.89	-60	CGNL
GFD035	328103.42	6576452.82	398.6	87.14	18.89	-60	CGNL
GFD038	328140.09	6576439.75	399	92	18.89	-60	CGNL
GFD041	328177.83	6576426.81	398.7	83.4	18.89	-60	CGNL
GFD049	328215.89	6576414.26	398.6	67.01	18.89	-60	CGNL
GFD053	328020.01	6576459.93	399.2	129.5	18.89	-60	CGNL
GFD055	328058.53	6576445.89	398.8	134.5	18.89	-60	CGNL
GFD057	328093.12	6576436.61	398.6	122	18.89	-60	CGNL
GFD064	328245.37	6576382.41	398.6	79	18.89	-60	CGNL
GFD066	328132.25	6576421.09	398.3	143	18.89	-60	CGNL
GFD068	328170.32	6576408.18	398.3	121.5	18.89	-60	CGNL
GFD069	328207.20	6576395.11	398.2	119	18.89	-60	CGNL
GFD078	328050.56	6576427.99	398.9	146.4	18.89	-60	CGNL
GFD080	328010.87	6576441.00	399.5	154.1	18.89	-60	CGNL

			İ	İ		1	
GFD082	328088.10	6576416.47	398.6	133	18.89	-60	CGNL
GFD083	328080.84	6576399.01	398.4	200	18.89	-60	CGNL
GFD084	328124.89	6576402.07	398.3	151	18.89	-60	CGNL
GFD085	328118.56	6576384.65	398.1	169.35	18.89	-60	CGNL
GFD086	328163.23	6576389.43	397.9	131	18.89	-60	CGNL
GFD087	328155.98	6576371.98	397.9	173	18.89	-60	CGNL
GFD088	328200.38	6576376.04	397.9	127	18.89	-60	CGNL
GFD089	328225.79	6576346.88	397	149.1	18.89	-60	CGNL
GFD090	328238.19	6576363.33	398.1	126	18.89	-60	CGNL
GFD091	328193.55	6576357.43	397.5	165	18.89	-60	CGNL
GFD092	328128.35	6576411.49	398	141	18.89	-60	CGNL
GFD093	328041.01	6576518.37	370.5	122.1	20	-90	CGNL
GFD094	328041.25	6576519.08	370.5	49	18.89	-60	CGNL
GFD095	328077.85	6576500.75	370.14	119	25	-88	CGNL
GFD097	328116.41	6576488.90	368.8	54.7	301	-86	CGNL
GFD098	328116.81	6576489.55	368.9	37.1	20	-69	CGNL
GFD099	327995.26	6576500.82	399.6	82.1	21	-59	CGNL
GFD100	327999.59	6576517.24	399.8	95	25	-60	CGNL
GFD101	328257.73	6576412.02	368.8	30	0	-90	CGNL
GFD102	328228.72	6576434.43	368.4	49	20	-60	CGNL
GFD103	328229.35	6576443.95	368.9	44	20	-60	CGNL
GFD104	328196.69	6576462.73	369.1	44	20	-65	CGNL
GFD105	328155.40	6576481.13	368.8	40	20	-65	CGNL
GFD106	328012.19	6576493.83	399.8	96	20	-60	CGNL
GFD107	328010.78	6576473.86	399.7	128	20	-60	CGNL
GFD108	328044.80	6576470.20	399.5	111	20	-60	CGNL
GFD109	328082.24	6576454.21	399.3	96	20	-60	CGNL
GFD110	328078.14	6576441.53	398.7	105	20	-60	CGNL
GFD111	328040.75	6576514.56	370.3	44	200	-60	CGNL
GFD112	328056.77	6576503.84	370.7	41.5	200	-60	CGNL
GFD113	328077.00	6576498.27	370	44.5	200	-60	CGNL
GFD114	328096.44	6576495.21	369.7	35	20	-70	CGNL
GFD115	328098.76	6576501.19	369.9	25	20	-65	CGNL
GFD432	328137.81	6576374.22	377.5	187	20.26	-59.2	MPI
GFD433	328143.28	6576389.51	377.6	132.8	18.59	-54.06	MPI
GFDD30160-1	328077.43	6576388.80	376.96	179.5	21.71	-58.47	REDEMPTIO N JV
							REDEMPTIO
GFDD30300-1	328218.79	6576365.15	379.97	122.7	20.73	-60.46	N JV REDEMPTIO
GFDD30340-1	328263.34	6576366.96	382.95	92.7	17.95	-59.21	N JV
GFR429	328143.84	6576419.37	373.1	110	20.74	-59.87	MPI
GFR430	328151.34	6576381.73	377.5	150	20.41	-59.04	MPI
GFR431	328133.79	6576391.99	377.6	142	20.31	-57.6	MPI
GFR434	328115.07	6576428.57	377.8	110	20	-50	MPI
GFRC30060-1	327998.67	6576462.80	378.48	132	18	-65	REDEMPTIO N JV
							REDEMPTIO
GFRC30100-1	328024.60	6576421.43	378.08	60	158.2	-87.85	N JV REDEMPTIO
GFRC30120-1	328050.60	6576425.98	374.28	140	21	-59	N JV REDEMPTIO
GFRC30340-2	328269.64	6576389.07	378.1	70	23.45	-61	N JV

								REDEMPTIO
	GFRC30340-3	328262.30	6576369.09	382.82	90	270.38	-89.2	N JV
	TMHCD0009	328191.72	6576283.72	397.581	324.56	13.04	-63.7	FOCUS
	TMHCD0011	328078.27	6576286.62	401.226	316.73	25.81	-56.63	FOCUS
	TMHCD0017	328221.74	6576561.23	402.977	319.79	205.64	-52.16	FOCUS
	TMHCD0018	328258.23	6576541.49	402.839	328.24	193.04	-50	FOCUS
	TMHDD0019	327996.85	6576529.96	381.931	187.9	205.04	-80	FOCUS
	TMHDD0020	327996.85	6576529.96	381.931	198.8	201.04	-70	FOCUS
	TMHDD0021	328228.43	6576436.08	360.169	170.67	207.84	-54.4	FOCUS
	TMHDD0022	328228.43	6576436.08	360.169	215.29	210.94	-64.3	FOCUS
	TMHDD0023	328228.43	6576436.08	360.169	232.94	210.04	-77	FOCUS
Data	New explo	ration resul	ts mineralise	d intersec	tions are	reported a	et a 0.90	/t Au cut-off
			rting width of					
aggregation			ighted averag					
methods	minimum r		eralised inters dth of 1m for rerages.					
Relationship			hogonal to m tween interc					
between	exactly in a							
mineralisation								
widths and								
intercept								
lengths								
Diagrams	Refer to Fig	jures and T	ables in body	of the rel	ease.			
Balanced	Recent FMI	_ drill assay	results used	in this est	imation a	re publish	ed in pre	vious news
roporting	releases. H	istoric drill h	nole results a	vailable o	n WAME	⟨.		
reporting								
Other	There is no	other mate	rial exploration	on data to	report at	this time.		
substantive								
exploration								
data								
Further work	to be complete been received. Follow-up R in structure targets in the Follow-up R	leted in late red. C drilling is s parallel to be Bonnie V C drilling is k at Green	planned at Lifields will be	A resourc onnie Vale Reef, as v Lindsays N contingei	e update to furthe well as te	is expecter delineate sting gree	ed once a e lode mi enfields (all data has neralisation geophysical

Section 3 Estimation and Reporting of Mineral Resources - Greenfields

(Criteria listed in section 1, and where relevant in section 2, also apply to this section. This section refers exclusively to the Greenfields Resource Update)

	usively to the Greenfields Resource Update)
Criteria	Commentary
Database integrity	 Data was geologically logged electronically, collar and downhole surveys were also received electronically as was the laboratory analysis results. These electronic files were loaded into an acQuire database by either consultants rOREdata or the company in-house Database Administrator. Data was routinely extracted to Microsoft Access during the drilling program for validation by the geologist in charge of the project. FML's database is a Microsoft SQL Server database (acQuire), which is case sensitive, relational and normalised to the Third Normal Form. As a result of normalisation, the following data integrity categories exist: Entity Integrity: No duplicate rows in a table, eliminated redundancy and chance of error. Domain Integrity: Enforces valid entries for a given column by restricting the type, the format or a range of values. Referential Integrity: Rows cannot be deleted which are used by other records. User-Defined Integrity: Business rules enforced by acQuire and validation codes set up by FML. Additionally, in-house validation scripts are routinely run in acQuire on FML's database and they include the following checks: Missing collar information Missing logging, sampling, downhole survey data and hole diameter Overlapping intervals in geological logging, sampling, down hole surveys Checks for character data in numeric fields The historical Greenfields drill data was validated by the Focus data management team and the Project Geologist. This involved collaborating all collar, downhole survey, geology and assay data with existing hardcopy material as well as displaying the holes in three dimensions in Surpac to determine any unusual or unlikely trends in the data so that it could be rectified before loading into the Focus site database. This process was thorough and took a couple of months for the team to complete.
Site visits	 Hannah Kosovich, the Competent Person for the Greenfields Resource Estimate is FML's Resource Geologist, and conducts periodic site visits. Wesley Groome, the Competent Person for the exploration results, is Senior Geologist at FML and conducts regular site visits
Geological interpretation	 All available drill hole and historic mining data was used to guide the geological interpretation of the mineralisation. The majority of the resource occurs in what has been labelled the Unit 4 Dolerite. The remaining minor lodes occur within the less well mineralised (and altered) Unit 3 and Unit 5 Dolerites. The mineralised geological interpretation was digitised in GEOVIA Surpac software on a section by section basis. The contact of the Dolerite 4 was used to guide the interpretation or an approximate 0.5g/t cut-off was used where the contact was obscure. Significant internal dilution included for continuity of modelling the Dolerite contact. Minor deviation only of the lode geometry was noticed between drill holes along strike and down-dip. Minor lodes with less continuity and sample numbers were also interpreted.
Dimensions	 The resource extends over a strike length of over 300m (from 30030mE to 30350mE) and includes the ~200m interval from the mined surface down to the 120mRL. The thickness of the main lode varies from average thickness of 20m near surface pinching to an average thickness of 10m at depth.

Estimation and modelling techniques

- 158 holes were used in the estimate including 96 RC, 8 diamond core holes and 54 RC pre-collared diamond core holes for a total of 16,908.82.
- Samples within the wireframes were composited to even 2m intervals, the dominant sample interval from historic drilling. Residual samples that did not meet the minimum length criteria of the compositing process were appended to the adjacent sample so that all material within the wireframe was included
- The statistics of the 2m composites were analysed to determine if any top cutting
 was required. Top-capping of higher Au values within each domain was carried out
 with Au values above the cut-off grade reset to the cut-off grade.
- Skree plots and Cumulative Frequency plots were used to determine top cut grade which was 25 g/t Au and affected five samples.
- Variography was modelled for the Major, Semi Major and Minor axes on the main Unit 3 Dolerite.
- GEOVIA Surpac Software was used for the estimation. An Ordinary Kriging (OK) technique was selected using the variograms modelled in Surpac. Each domain was estimated separately using only its own sample values. No samples were shared between domains (hard boundaries).
- Minimum (8) and maximum (32) sample numbers were selected based on a Quantitative Kriging Neighbourhood analysis.
- An elliptical search was used orientated on the lode geometry and based on range of the Variograms.
- Three search passes were run in order to fill the block model with estimated Au values, with reduced minimum sample numbers and increased search distances.
- Block sizes for the model were 5m in Y, 20m in X and 5m in Z direction. Sub celling
 of the parent blocks was permitted to 1.25m in the Y direction, 5m in the X direction
 and 2.5m in the Z direction. Sub-blocking was used to best fill the wireframes and
 inherit the grade of the parent block. A 20° rotation in the Z axis (bearing rotation)
 was applied to the orientation of the blocks. This aligned the blocks with the WNW
 strike of the lodes.
- The estimate was validated by a number of methods. An initial visual review was done by comparing estimated blocks and raw drill holes.
- Tonnage weighted mean grades were compared for all lodes with the raw and topcapped drill hole values. There were no major differences.
- Swath plots of drill hole values and estimated Au grades by northing and RL were completed to review the trends of the raw data vs estimates and if too much smoothing of the grades had occurred.
- Comparisons between previous Greenfields block model estimates was also plotted as trend lines by elevation.

Moisture

• Tonnages are estimated on a dry basis.

Cut-off parameters

• The Resources for Brilliant have been reported above a 1g/t cut-off for open pit above 265mRL, this is based on a preliminary whittle shell optimisation.

Mining factors or assumptions

 An existing open pit exists at Greenfields, mining would continue by cut-back and open cut extraction.

Metallurgical factors or assumptions

- In house metallurgical test work had been conducted on Greenfields samples and recoveries were in the plus 90% range.
- GMC who mined Greenfields from Dec 2003 to Jan 2005 had an overall reconciliation of ~96.9% of tonnes, 100.7% of grade and 101% of ounces milled compared to mined.

Environmental factors or assumptions

- Greenfields deposit occurs in an area of previous disturbance with an open cut pit and associated waste dump.
- The Three Mile Hill Processing Plant is currently on care and maintenance, but has all necessary tailing facilities etc. that would allow for a rapid restart of the plant.

Bulk density

Bulk densities of 1.8, 2.4 and 2.8 t/m³ were applied to Oxide, Transitional and Fresh resources respectively. The oxide and transitional values are based on values used in similar gold deposits. The fresh rock value is based on 32 measurements taken

	from recent Focus drill core using a water immersion method and is the average value of those samples.
Classification	 Resources have been classified as either Indicated or Inferred based mainly on geological confidence in the geometry and continuity of the lodes. In addition, various estimation output parameters such as number of samples, search pass, kriging variance, and slope of regression have been used to assist in classification. Recent Focus drilling has confirmed the geological interpretation is sound and provided some quality assurance in the pre-Focus drilling.
Audits or reviews	No external audits or reviews were formally carried out on the Greenfields deposit.
Discussion of relative accuracy/ confidence	 The mineral resource relates to global tonnage and grade estimates. The Greenfields pit has been mined in four campaigns in the modern era commencing in 1986 and finishing in 2005 producing some 0.98Mt @ 1.81g/t for 56,776 ounces (reconciled). The current model reports higher tonnages at a lower grade due to the internal dilution included in modelling the main dolerite unit, 1.38Mt @ 1.69g/t for 75,214 ounces.